
XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X
Technology

Preview

���

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X
Technology

Preview

���

First

Edition

(December

2003)

This

document,

the

applications,

and

the

functions

discussed,

are

offered

as

technology

previews.

They

are

provided

on

an

″AS-IS″

BASIS,

WITHOUT

WARRANTY

OR

CONDITION

OF

ANY

KIND,

INCLUDING

THE

IMPLIED

WARRANTIES

OR

CONDITIONS

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Contents

Preface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Compiling

XL

Fortran

SMP

Programs

.

. 1

-qsmp

Option

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Setting

Run-Time

Options

.

.

.

.

.

.

. 7

The

XLSMPOPTS

Environment

Variable

.

.

.

.

. 7

OpenMP

Environment

Variables

.

.

.

. 13

OMP_DYNAMIC

Environment

Variable

.

.

.

.

. 13

OMP_NESTED

Environment

Variable

.

.

.

.

. 13

OMP_NUM_THREADS

Environment

Variable

.

.

. 14

OMP_SCHEDULE

Environment

Variable

.

.

.

. 14

SMP

Directives

.

.

.

.

.

.

.

.

.

.

. 17

An

Introduction

to

SMP

Directives

.

.

.

.

.

. 17

Parallel

Region

Construct

.

.

.

.

.

.

.

.

. 17

Work-sharing

Constructs

.

.

.

.

.

.

.

.

. 17

Combined

Parallel

Work-sharing

Constructs

.

. 18

Synchronization

Constructs

.

.

.

.

.

.

.

. 18

Other

OpenMP

Directives

.

.

.

.

.

.

.

. 18

Non-OpenMP

SMP

Directives

.

.

.

.

.

.

. 18

Detailed

Descriptions

of

SMP

Directives

.

.

.

.

. 18

ATOMIC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

BARRIER

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

CRITICAL

/

END

CRITICAL

.

.

.

.

.

.

. 22

DO

/

END

DO

.

.

.

.

.

.

.

.

.

.

.

. 23

DO

SERIAL

.

.

.

.

.

.

.

.

.

.

.

.

. 26

FLUSH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

MASTER

/

END

MASTER

.

.

.

.

.

.

.

. 29

ORDERED

/

END

ORDERED

.

.

.

.

.

.

. 30

PARALLEL

/

END

PARALLEL

.

.

.

.

.

.

. 33

PARALLEL

DO

/

END

PARALLEL

DO

.

.

.

. 35

PARALLEL

SECTIONS

/

END

PARALLEL

SECTIONS

.

.

.

.

.

.

.

.

.

.

.

.

. 38

PARALLEL

WORKSHARE

/

END

PARALLEL

WORKSHARE

.

.

.

.

.

.

.

.

.

.

.

. 41

SCHEDULE

.

.

.

.

.

.

.

.

.

.

.

.

. 42

SECTIONS

/

END

SECTIONS

.

.

.

.

.

.

. 45

SINGLE

/

END

SINGLE

.

.

.

.

.

.

.

.

. 48

THREADLOCAL

.

.

.

.

.

.

.

.

.

.

. 52

THREADPRIVATE

.

.

.

.

.

.

.

.

.

.

. 54

WORKSHARE

.

.

.

.

.

.

.

.

.

.

.

. 58

OpenMP

Directive

Clauses

.

.

.

.

.

.

.

.

. 61

Global

Rules

for

Directive

Clauses

.

.

.

.

.

. 61

COPYIN

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

COPYPRIVATE

.

.

.

.

.

.

.

.

.

.

.

. 64

DEFAULT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

IF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

FIRSTPRIVATE

.

.

.

.

.

.

.

.

.

.

.

. 67

LASTPRIVATE

.

.

.

.

.

.

.

.

.

.

.

. 68

NUM_THREADS

.

.

.

.

.

.

.

.

.

.

. 69

ORDERED

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

PRIVATE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

REDUCTION

.

.

.

.

.

.

.

.

.

.

.

.

. 72

SCHEDULE

.

.

.

.

.

.

.

.

.

.

.

.

. 74

SHARED

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

OpenMP

Execution

Environment

and

Lock

Routines

.

.

.

.

.

.

.

.

.

.

. 79

omp_destroy_lock

.

.

.

.

.

.

.

.

.

.

.

. 80

omp_destroy_nest_lock

.

.

.

.

.

.

.

.

.

. 80

omp_get_dynamic

.

.

.

.

.

.

.

.

.

.

.

. 80

omp_get_max_threads

.

.

.

.

.

.

.

.

.

.

. 81

omp_get_nested

.

.

.

.

.

.

.

.

.

.

.

.

. 81

omp_get_num_procs

.

.

.

.

.

.

.

.

.

.

. 81

omp_get_num_threads

.

.

.

.

.

.

.

.

.

. 82

omp_get_thread_num

.

.

.

.

.

.

.

.

.

.

. 82

omp_get_wtick

.

.

.

.

.

.

.

.

.

.

.

.

. 83

omp_get_wtime

.

.

.

.

.

.

.

.

.

.

.

.

. 84

omp_in_parallel

.

.

.

.

.

.

.

.

.

.

.

.

. 84

omp_init_lock

.

.

.

.

.

.

.

.

.

.

.

.

. 85

omp_init_nest_lock

.

.

.

.

.

.

.

.

.

.

.

. 85

omp_set_dynamic

.

.

.

.

.

.

.

.

.

.

.

. 86

omp_set_lock

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

omp_set_nested

.

.

.

.

.

.

.

.

.

.

.

.

. 87

omp_set_nest_lock

.

.

.

.

.

.

.

.

.

.

.

. 87

omp_set_num_threads

.

.

.

.

.

.

.

.

.

.

. 88

omp_test_lock

.

.

.

.

.

.

.

.

.

.

.

.

. 88

omp_test_nest_lock

.

.

.

.

.

.

.

.

.

.

.

. 89

omp_unset_lock

.

.

.

.

.

.

.

.

.

.

.

.

. 89

omp_unset_nest_lock

.

.

.

.

.

.

.

.

.

.

. 89

Trademarks

and

Service

Marks

.

.

.

. 91

iii

iv

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

Preface

This

document

provides

information

on

the

following:

v

“Compiling

XL

Fortran

SMP

Programs”

on

page

1

v

“Setting

Run-Time

Options”

on

page

7

v

“OpenMP

Environment

Variables”

on

page

13

v

“SMP

Directives”

on

page

17

v

“OpenMP

Execution

Environment

and

Lock

Routines”

on

page

79

Note!

Features

discussed

in

these

sections,

as

part

of

the

Technology

Preview,

are

provided

″as-is″

and

are

not

part

of

the

XL

Fortran

compiler

product.

The

purpose

of

this

preview

is

to

showcase

early

results

of

development

work.

There

is

no

support

for

these

features.

v

vi

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

Compiling

XL

Fortran

SMP

Programs

You

can

use

the

xlf_r,

xlf90_r,

or

xlf95_r

commands

to

compile

XL

Fortran

SMP

programs.

The

xlf_r

command

is

similar

to

the

xlf

command,

the

xlf90_r

command

is

similar

to

the

xlf90

command,

and

the

xlf95_r

command

is

similar

to

the

xlf95

command.

The

main

difference

is

that

the

thread-safe

components

are

used

to

link

and

bind

the

object

files

if

you

specify

the

xlf_r,

xlf90_r,

or

xlf95_r

commands.

Note

that

using

any

of

these

commands

alone

does

not

imply

parallelization.

For

the

compiler

to

recognize

the

SMP

directives

and

activate

parallelization,

you

must

also

specify

-qsmp.

In

turn,

you

can

only

specify

the

-qsmp

option

in

conjunction

with

one

of

these

six

invocation

commands.

When

you

specify

-qsmp,

the

driver

links

in

the

libraries

specified

on

the

smplibraries

line

in

the

active

stanza

of

the

configuration

file.

A

detailed

description

of

the

–qsmp

compiler

option

is

provided

below.

1

-qsmp

Option

Format

-qsmp[=suboptions]

-qnosmp

Indicates

that

code

should

be

produced

for

an

SMP

system.

The

default

is

to

produce

code

for

a

uniprocessor

machine.

When

you

specify

this

option,

the

compiler

recognizes

all

directives

with

the

trigger

constants

SMP$,

$OMP,

and

IBMP

(unless

you

specify

the

omp

suboption).

Only

the

xlf_r,

xlf90_r,

and

xlf95_r

invocation

commands

automatically

link

in

all

of

the

thread-safe

components.

You

can

use

the

-qsmp

option

with

the

xlf,

xlf90,

xlf95,

f77,

and

fort77

invocation

commands,

but

you

are

responsible

for

linking

in

the

appropriate

components.

.

If

you

use

the

-qsmp

option

to

compile

any

source

file

in

a

program,

then

you

must

specify

the

-qsmp

option

at

link

time

as

well,

unless

you

link

by

using

the

ld

command.

Parameters

auto

|

noauto

This

suboption

controls

automatic

parallelization.

By

default,

the

compiler

will

attempt

to

parallelize

explicitly

coded

DO

loops

as

well

as

those

that

are

generated

by

the

compiler

for

array

language.

If

you

specify

the

suboption

noauto,

automatic

parallelization

is

turned

off,

and

only

constructs

that

are

marked

with

prescriptive

directives

are

parallelized.

If

the

compiler

encounters

the

omp

suboption

and

the

-qsmp

or

-qsmp=auto

suboptions

are

not

explicitly

specified

on

the

command

line,

the

noauto

suboption

is

implied.

nested_par

|

nonested_par

If

you

specify

the

nested_par

suboption,

the

compiler

parallelizes

prescriptive

nested

parallel

constructs

(PARALLEL

DO,

PARALLEL

SECTIONS).

This

includes

not

only

the

loop

constructs

that

are

nested

within

a

scoping

unit

but

also

parallel

constructs

in

subprograms

that

are

referenced

(directly

or

indirectly)

from

within

other

parallel

constructs.

By

default,

the

compiler

serializes

a

nested

parallel

construct.

Note

that

this

option

has

no

effect

on

loops

that

are

automatically

parallelized.

In

this

case,

at

most

one

loop

in

a

loop

nest

(in

a

scoping

unit)

will

be

parallelized.

Note

that

the

implementation

of

the

nested_par

suboption

does

not

comply

with

the

OpenMP

Fortran

API.

If

you

specify

this

suboption,

the

run-time

library

uses

the

same

threads

for

the

nested

PARALLEL

DO

and

PARALLEL

SECTIONS

constructs

that

it

used

for

the

enclosing

PARALLEL

constructs.

omp

|

noomp

If

you

specify

this

suboption,

the

compiler

enforces

compliance

with

the

OpenMP

Fortran

API.

Specifying

this

option

has

the

following

effects:

v

Automatic

parallelization

is

turned

off.

v

All

previously

recognized

directive

triggers

are

ignored.

Compiling

SMP

Programs

2

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

v

The

-qcclines

compiler

option

is

turned

on

if

you

specify

-qsmp=omp.

v

The

-qcclines

compiler

option

is

not

turned

on

if

you

specify

-qnocclines

and

-qsmp=omp.

v

The

only

recognized

directive

trigger

is

$OMP.

However,

you

can

specify

additional

triggers

on

subsequent

-qdirective

options.

v

The

compiler

issues

warning

messages

if

your

code

contains

any

language

constructs

that

do

not

conform

to

the

OpenMP

Fortran

API.

Specifying

this

option

when

the

C

preprocessor

is

invoked

also

defines

the

_OPENMP

C

preprocessor

macro

automatically,

with

the

value

200011,

which

is

useful

in

supporting

conditional

compilation.

This

macro

is

only

defined

when

the

C

preprocessor

is

invoked.

opt

|

noopt

If

the

-qsmp=noopt

suboption

is

specified,

the

compiler

will

do

the

smallest

amount

of

optimization

that

is

required

to

parallelize

the

code.

This

is

useful

for

debugging

because

-qsmp

enables

the

-O2

option

by

default,

which

may

result

in

the

movement

of

some

variables

into

registers

that

are

inaccessible

to

the

debugger.

However,

if

the

-qsmp=noopt

and

-g

options

are

specified,

these

variables

will

remain

visible

to

the

debugger.

rec_locks

|

norec_locks

This

suboption

specifies

whether

recursive

locks

are

used

to

avoid

problems

associated

with

CRITICAL

constructs.

If

you

specify

the

rec_locks

suboption,

a

thread

can

enter

a

CRITICAL

construct

from

within

the

dynamic

extent

of

another

CRITICAL

construct

that

has

the

same

name.

If

you

specify

norec_locks,

a

deadlock

would

occur

in

such

a

situation.

The

default

is

norec_locks,

or

regular

locks.

schedule=option

The

schedule

suboption

can

take

any

one

of

the

following

subsuboptions:

affinity[=n]

The

iterations

of

a

loop

are

initially

divided

into

number_of_threads

partitions,

containing

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Each

partition

is

initially

assigned

to

a

thread

and

is

then

further

subdivided

into

chunks

that

each

contain

n

iterations.

If

n

has

not

been

specified,

then

the

chunks

consist

of

CEILING(number_of_iterations_left_in_partition

/

2)

loop

iterations.

When

a

thread

becomes

free,

it

takes

the

next

chunk

from

its

initially

assigned

partition.

If

there

are

no

more

chunks

in

that

partition,

then

the

thread

takes

the

next

available

chunk

from

a

partition

initially

assigned

to

another

thread.

The

work

in

a

partition

initially

assigned

to

a

sleeping

thread

will

be

completed

by

threads

that

are

active.

Compiling

SMP

Programs

Compiling

XL

Fortran

SMP

Programs

3

dynamic[=n]

The

iterations

of

a

loop

are

divided

into

chunks

containing

n

iterations

each.

If

n

has

not

been

specified,

then

the

chunks

consist

of

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Active

threads

are

assigned

these

chunks

on

a

″first-come,

first-do″

basis.

Chunks

of

the

remaining

work

are

assigned

to

available

threads

until

all

work

has

been

assigned.

If

a

thread

is

asleep,

its

assigned

work

will

be

taken

over

by

an

active

thread

once

that

thread

becomes

available.

guided[=n]

The

iterations

of

a

loop

are

divided

into

progressively

smaller

chunks

until

a

minimum

chunk

size

of

n

loop

iterations

is

reached.

If

n

has

not

been

specified,

the

default

value

for

n

is

1

iteration.

The

first

chunk

contains

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Subsequent

chunks

consist

of

CEILING(number_of_iterations_left

/

number_of_threads)

iterations.

Active

threads

are

assigned

chunks

on

a

″first-come,

first-do″

basis.

runtime

Specifies

that

the

chunking

algorithm

will

be

determined

at

run

time.

static[=n]

The

iterations

of

a

loop

are

divided

into

chunks

containing

n

iterations

each.

Each

thread

is

assigned

chunks

in

a

″round-robin″

fashion.

This

is

known

as

block

cyclic

scheduling.

If

the

value

of

n

is

1,

then

the

scheduling

type

is

specifically

referred

to

as

cyclic

scheduling.

If

you

have

not

specified

n,

the

chunks

will

contain

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Each

thread

is

assigned

one

of

these

chunks.

This

is

known

as

block

scheduling.

If

a

thread

is

asleep

and

it

has

been

assigned

work,

it

will

be

awakened

so

that

it

may

complete

its

work.

threshold=n

Controls

the

amount

of

automatic

loop

parallelization

that

occurs.

The

value

of

n

represents

the

lower

limit

allowed

for

parallelization

of

a

loop,

based

on

the

level

of

″work″

present

in

a

loop.

Currently,

the

calculation

of

″work″

is

weighted

heavily

by

the

number

of

iterations

in

the

loop.

In

general,

the

higher

the

value

specified

for

n,

the

fewer

loops

are

parallelized.

If

this

suboption

is

not

specified,

the

program

will

use

the

default

value

n=100.

Processing

v

If

you

specify

-qsmp

more

than

once,

the

previous

settings

of

all

suboptions

are

preserved,

unless

overridden

by

the

subsequent

suboption

setting.

The

compiler

does

not

override

previous

suboptions

that

you

specify.

The

same

is

true

for

the

version

of

-qsmp

without

suboptions;

the

default

options

are

saved.

v

Specifying

the

omp

suboption

always

implies

noauto,

unless

you

specify

-qsmp

or

-qsmp=auto

on

the

command

line.

Compiling

SMP

Programs

4

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

v

Specifying

the

noomp

suboption

always

implies

auto.

v

The

omp

and

noomp

suboptions

only

appear

in

the

compiler

listing

if

you

explicitly

set

them.

v

If

-qsmp

is

specified

without

any

suboptions,

-qsmp=opt

becomes

the

default

setting.

If

-qsmp

is

specified

after

the

-qsmp=noopt

suboption

has

been

set,

the

-qsmp=noopt

setting

will

always

be

ignored.

v

If

the

option

-qsmp

with

no

suboptions

follows

the

suboption-qsmp=noopt

on

a

command

line,

the

-qsmp=opt

and

-qsmp=auto

options

are

enabled.

v

Specifying

the

-qsmp=noopt

suboption

implies

that

-qsmp=noauto.

It

also

implies

-qnoopt.

This

option

overrides

performance

options

such

as

-O2,

-O3,

-qhot,

anywhere

on

the

command

line

unless

-qsmp

appears

after

-qsmp=noopt.

v

Object

files

generated

with

the

-qsmp=opt

option

can

be

linked

with

object

files

generated

with

-qsmp=noopt.

The

visibility

within

the

debugger

of

the

variables

in

each

object

file

will

not

be

affected

by

linking.

Restrictions

The

-qsmp=noopt

suboption

may

affect

the

performance

of

the

program.

Within

the

same

-qsmp

specification,

you

cannot

specify

the

omp

suboption

before

or

after

certain

suboptions.

The

compiler

issues

warning

messages

if

you

attempt

to

specify

them

with

omp:

auto

This

suboption

controls

automatic

parallelization,

but

omp

turns

off

automatic

parallelization.

nested_par

Note

that

the

implementation

of

the

nested_par

suboption

does

not

comply

with

the

OpenMP

Fortran

API.

If

you

specify

this

suboption,

the

run-time

library

uses

the

same

threads

for

the

nested

PARALLEL

DO

and

PARALLEL

SECTIONS

constructs

that

it

used

for

the

enclosing

PARALLEL

constructs.

rec_locks

This

suboption

specifies

a

behaviour

for

CRITICAL

constructs

that

is

inconsistent

with

the

OpenMP

Fortran

API.

schedule=affinity=n

The

affinity

scheduling

type

does

not

appear

in

the

OpenMP

Fortran

API

standard.

Examples

The

-qsmp=noopt

suboption

overrides

performance

optimization

options

anywhere

on

the

command

line

unless

-qsmp

appears

after

-qsmp=noopt.

The

following

examples

illustrate

that

all

optimization

options

that

appear

after

-qsmp=noopt

are

processed

according

to

the

normal

rules

of

scope

and

precedence.

Example

1

xlf90

-qsmp=noopt

-O3...

is

equivalent

to

xlf90

-qsmp=noopt...

Example

2

xlf90

-qsmp=noopt

-O3

-qsmp...

is

equivalent

to

xlf90

-qsmp

-O3...

Compiling

SMP

Programs

Compiling

XL

Fortran

SMP

Programs

5

Example

3

xlf90

-qsmp=noopt

-O3

-qhot

-qsmp

-O2...

is

equivalent

to

xlf90

-qsmp

-qhot

-O2...

If

you

specify

the

following,

the

compiler

recognizes

both

the

$OMP

and

SMP$

directive

triggers

and

issues

a

warning

if

a

directive

specified

with

either

trigger

is

not

allowed

in

OpenMP.

-qsmp=omp

-qdirective=SMP$

If

you

specify

the

following,

the

noauto

suboption

is

used.

The

compiler

issues

a

warning

message

and

ignores

the

auto

suboption.

-qsmp=omp:auto

In

the

following

example,

you

should

specify

-qsmp=rec_locks

to

avoid

a

deadlock

caused

by

CRITICAL

constructs.

program

t

integer

i,

a,

b

a

=

0

b

=

0

!smp$

parallel

do

do

i=1,

10

!smp$

critical

a

=

a

+

1

!smp$

critical

b

=

b

+

1

!smp$

end

critical

!smp$

end

critical

enddo

end

If

you

use

the

xlf,

xlf_r,

f77,

or

fort77

command

with

the

-qsmp

option

to

compile

programs,

specify

-qnosave

to

make

the

default

storage

class

automatic,

and

specify

-qthreaded

to

tell

the

compiler

to

generate

thread-safe

code.

Compiling

SMP

Programs

6

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

Setting

Run-Time

Options

The

XLSMPOPTS

Environment

Variable

The

XLSMPOPTS

environment

variable

allows

you

to

specify

options

that

affect

SMP

execution.

You

can

declare

XLSMPOPTS

by

using

the

following

ksh

or

bash

command

format:

��

�

:

XLSMPOPTS=

runtime_option_name

=

option_setting

"

"

��

You

can

specify

option

names

and

settings

in

uppercase

or

lowercase.

You

can

add

blanks

before

and

after

the

colons

and

equal

signs

to

improve

readability.

However,

if

the

XLSMPOPTS

option

string

contains

imbedded

blanks,

you

must

enclose

the

entire

option

string

in

double

quotation

marks

(").

You

can

specify

the

following

run-time

options

with

the

XLSMPOPTS

environment

variable:

schedule

Selects

the

scheduling

type

and

chunk

size

to

be

used

as

the

default

at

run

time.

The

scheduling

type

that

you

specify

will

only

be

used

for

loops

that

were

not

already

marked

with

a

scheduling

type

at

compilation

time.

Work

is

assigned

to

threads

in

a

different

manner,

depending

on

the

scheduling

type

and

chunk

size

used.

A

brief

description

of

the

scheduling

types

and

their

influence

on

how

work

is

assigned

follows:

dynamic

or

guided

The

run-time

library

dynamically

schedules

parallel

work

for

threads

on

a

″first-come,

first-do″

basis.

″Chunks″

of

the

remaining

work

are

assigned

to

available

threads

until

all

work

has

been

assigned.

Work

is

not

assigned

to

threads

that

are

asleep.

static

Chunks

of

work

are

assigned

to

the

threads

in

a

″round-robin″

fashion.

Work

is

assigned

to

all

threads,

both

active

and

asleep.

The

system

must

activate

sleeping

threads

in

order

for

them

to

complete

their

assigned

work.

affinity

The

run-time

library

performs

an

initial

division

of

the

iterations

into

number_of_threads

partitions.

The

number

of

iterations

that

these

partitions

contain

is:

CEILING(number_of_iterations

/

number_of_threads)

These

partitions

are

then

assigned

to

each

of

the

threads.

It

is

these

partitions

that

are

then

subdivided

into

chunks

of

iterations.

If

a

thread

is

asleep,

the

threads

that

are

active

will

complete

their

assigned

partition

of

work.

Choosing

chunking

granularity

is

a

tradeoff

between

overhead

and

load

balancing.

The

syntax

for

this

option

is

schedule=suboption,

where

the

suboptions

are

defined

as

follows:

affinity[=n]

As

described

previously,

the

iterations

of

a

loop

are

initially

7

divided

into

partitions,

which

are

then

preassigned

to

the

threads.

Each

of

these

partitions

is

then

further

subdivided

into

chunks

that

contain

n

iterations.

If

you

have

not

specified

n,

a

chunk

consists

of

CEILING(number_of_iterations_left_in_local_partition

/

2)

loop

iterations.

When

a

thread

becomes

available,

it

takes

the

next

chunk

from

its

preassigned

partition.

If

there

are

no

more

chunks

in

that

partition,

the

thread

takes

the

next

available

chunk

from

a

partition

preassigned

to

another

thread.

dynamic[=n]

The

iterations

of

a

loop

are

divided

into

chunks

that

contain

n

iterations

each.

If

you

have

not

specified

n,

a

chunk

consists

of

CEILING(number_of_iterations

/

number_of_threads)

iterations.

guided[=n]

The

iterations

of

a

loop

are

divided

into

progressively

smaller

chunks

until

a

minimum

chunk

size

of

n

loop

iterations

is

reached.

If

you

have

not

specified

n,

the

default

value

for

n

is

1

iteration.

The

first

chunk

contains

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Subsequent

chunks

consist

of

CEILING(number_of_iterations_left

/

number_of_threads)

iterations.

static[=n]

The

iterations

of

a

loop

are

divided

into

chunks

that

contain

n

iterations.

Threads

are

assigned

chunks

in

a

″round-robin″

fashion.

This

is

known

as

block

cyclic

scheduling.

If

the

value

of

n

is

1,

the

scheduling

type

is

specifically

referred

to

as

cyclic

scheduling.

If

you

have

not

specified

n,

the

chunks

will

contain

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Each

thread

is

assigned

one

of

these

chunks.

This

is

known

as

block

scheduling.

If

you

have

not

specified

schedule,

the

default

is

set

to

schedule=static,

resulting

in

block

scheduling.

Parallel

execution

options

The

three

parallel

execution

options,

parthds,

usrthds,

and

stack,

are

as

follows:

parthds=num

Specifies

the

number

of

threads

(num)

to

be

used

for

parallel

execution

of

code

that

you

compiled

with

the

-qsmp

option.

By

default,

this

is

equal

to

the

number

of

online

processors.

There

are

some

applications

that

cannot

use

more

than

some

maximum

number

of

processors.

There

are

also

some

applications

that

can

achieve

performance

gains

if

they

use

more

threads

than

there

are

processors.

This

option

allows

you

full

control

over

the

number

of

execution

threads.

The

default

value

for

num

is

1

if

you

did

not

specify

-qsmp.

Otherwise,

it

is

the

number

of

online

processors

on

the

machine.

Setting

Run-Time

Options

8

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

usrthds=num

Specifies

the

maximum

number

of

threads

(num)

that

you

expect

your

code

will

explicitly

create

if

the

code

does

explicit

thread

creation.

The

default

value

for

num

is

0.

stack=num

Specifies

the

largest

amount

of

space

in

bytes

(num)

that

a

thread’s

stack

will

need.

The

default

value

for

num

is

4194304.

Set

stack=num

so

it

is

within

the

acceptable

upper

limit.

num

can

be

up

to

256

MB.

An

application

that

exceeds

the

upper

limit

may

cause

a

segmentation

fault.

Performance

tuning

options

When

a

thread

completes

its

work

and

there

is

no

new

work

to

do,

it

can

go

into

either

a

″busy-wait″

state

or

a

″sleep″

state.

In

″busy-wait″,

the

thread

keeps

executing

in

a

tight

loop

looking

for

additional

new

work.

This

state

is

highly

responsive

but

harms

the

overall

utilization

of

the

system.

When

a

thread

sleeps,

it

completely

suspends

execution

until

another

thread

signals

it

that

there

is

work

to

do.

This

state

provides

better

utilization

of

the

system

but

introduces

extra

overhead

for

the

application.

The

xlsmp

run-time

library

routines

use

both

″busy-wait″

and

″sleep″

states

in

their

approach

to

waiting

for

work.

You

can

control

these

states

with

the

spins,

yields,

and

delays

options.

During

the

busy-wait

search

for

work,

the

thread

repeatedly

scans

the

work

queue

up

to

num

times,

where

num

is

the

value

that

you

specified

for

the

option

spins.

If

a

thread

cannot

find

work

during

a

given

scan,

it

intentionally

wastes

cycles

in

a

delay

loop

that

executes

num

times,

where

num

is

the

value

that

you

specified

for

the

option

delays.

This

delay

loop

consists

of

a

single

meaningless

iteration.

The

length

of

actual

time

this

takes

will

vary

among

processors.

If

the

value

spins

is

exceeded

and

the

thread

still

cannot

find

work,

the

thread

will

yield

the

current

time

slice

(time

allocated

by

the

processor

to

that

thread)

to

the

other

threads.

The

thread

will

yield

its

time

slice

up

to

num

times,

where

num

is

the

number

that

you

specified

for

the

option

yields.

If

this

value

num

is

exceeded,

the

thread

will

go

to

sleep.

In

summary,

the

ordered

approach

to

looking

for

work

consists

of

the

following

steps:

1.

Scan

the

work

queue

for

up

to

spins

number

of

times.

If

no

work

is

found

in

a

scan,

then

loop

delays

number

of

times

before

starting

a

new

scan.

2.

If

work

has

not

been

found,

then

yield

the

current

time

slice.

3.

Repeat

the

above

steps

up

to

yields

number

of

times.

4.

If

work

has

still

not

been

found,

then

go

to

sleep.

The

syntax

for

specifying

these

options

is

as

follows:

spins[=num]

where

num

is

the

number

of

spins

before

a

yield.

The

default

value

for

spins

is

100.

yields[=num]

where

num

is

the

number

of

yields

before

a

sleep.

The

default

value

for

yields

is

10.

delays[=num]

where

num

is

the

number

of

delays

while

busy-waiting.

The

default

value

for

delays

is

500.

Setting

Run-Time

Options

Setting

Run-Time

Options

9

Zero

is

a

special

value

for

spins

and

yields,

as

it

can

be

used

to

force

complete

busy-waiting.

Normally,

in

a

benchmark

test

on

a

dedicated

system,

you

would

set

both

options

to

zero.

However,

you

can

set

them

individually

to

achieve

other

effects.

For

instance,

on

a

dedicated

8-way

SMP,

setting

these

options

to

the

following:

parthds=8

:

schedule=dynamic=10

:

spins=0

:

yields=0

results

in

one

thread

per

CPU,

with

each

thread

assigned

chunks

consisting

of

10

iterations

each,

with

busy-waiting

when

there

is

no

immediate

work

to

do.

Options

to

enable

and

control

dynamic

profiling

You

can

use

dynamic

profiling

to

reevaluate

the

compiler’s

decision

to

parallelize

loops

in

a

program.

The

three

options

you

can

use

to

do

this

are:

parthreshold,

seqthreshold,

and

profilefreq.

parthreshold=num

Specifies

the

time,

in

milliseconds,

below

which

each

loop

must

execute

serially.

If

you

set

parthreshold

to

0,

every

loop

that

has

been

parallelized

by

the

compiler

will

execute

in

parallel.

The

default

setting

is

0.2

milliseconds,

meaning

that

if

a

loop

requires

fewer

than

0.2

milliseconds

to

execute

in

parallel,

it

should

be

serialized.

Typically,

parthreshold

is

set

to

be

equal

to

the

parallelization

overhead.

If

the

computation

in

a

parallelized

loop

is

very

small

and

the

time

taken

to

execute

these

loops

is

spent

primarily

in

the

setting

up

of

parallelization,

these

loops

should

be

executed

sequentially

for

better

performance.

seqthreshold=num

Specifies

the

time,

in

milliseconds,

beyond

which

a

loop

that

was

previously

serialized

by

the

dynamic

profiler

should

revert

to

being

a

parallel

loop.

The

default

setting

is

5

milliseconds,

meaning

that

if

a

loop

requires

more

than

5

milliseconds

to

execute

serially,

it

should

be

parallelized.

seqthreshold

acts

as

the

reverse

of

parthreshold.

profilefreq=num

Specifies

the

frequency

with

which

a

loop

should

be

revisited

by

the

dynamic

profiler

to

determine

its

appropriateness

for

parallel

or

serial

execution.

Loops

in

a

program

can

be

data

dependent.

The

loop

that

was

chosen

to

execute

serially

with

a

pass

of

dynamic

profiling

may

benefit

from

parallelization

in

subsequent

executions

of

the

loop,

due

to

different

data

input.

Therefore,

you

need

to

examine

these

loops

periodically

to

reevaluate

the

decision

to

serialize

a

parallel

loop

at

run

time.

Setting

Run-Time

Options

10

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

The

allowed

values

for

this

option

are

the

numbers

from

0

to

32.

If

you

set

profilefreq

to

one

of

these

values,

the

following

results

will

occur.

v

If

profilefreq

is

0,

all

profiling

is

turned

off,

regardless

of

other

settings.

The

overheads

that

occur

because

of

profiling

will

not

be

present.

v

If

profilefreq

is

1,

loops

parallelized

automatically

by

the

compiler

will

be

monitored

every

time

they

are

executed.

v

If

profilefreq

is

2,

loops

parallelized

automatically

by

the

compiler

will

be

monitored

every

other

time

they

are

executed.

v

If

profilefreq

is

greater

than

or

equal

to

2

but

less

than

or

equal

to

32,

each

loop

will

be

monitored

once

every

nth

time

it

is

executed.

v

If

profilefreq

is

greater

than

32,

then

32

is

assumed.

It

is

important

to

note

that

dynamic

profiling

is

not

applicable

to

user-specified

parallel

loops

(for

example,

loops

for

which

you

specified

the

PARALLEL

DO

directive).

Setting

Run-Time

Options

Setting

Run-Time

Options

11

Setting

Run-Time

Options

12

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

OpenMP

Environment

Variables

The

following

environment

variables,

which

are

included

in

the

OpenMP

standard,

allow

you

to

control

the

execution

of

parallel

code.

Note:

If

you

specify

both

the

XLSMPOPTS

environment

variable

and

an

OpenMP

environment

variable,

the

OpenMP

environment

variable

takes

precedence.

OMP_DYNAMIC

Environment

Variable

The

OMP_DYNAMIC

environment

variable

enables

or

disables

dynamic

adjustment

of

the

number

of

threads

available

for

the

execution

of

parallel

regions.

The

syntax

is

as

follows:

��

OMP_DYNAMIC=

TRUE

FALSE

��

If

you

set

this

environment

variable

to

TRUE,

the

run-time

environment

can

adjust

the

number

of

threads

it

uses

for

executing

parallel

regions

so

that

it

makes

the

most

efficient

use

of

system

resources.

If

you

set

this

environment

variable

to

FALSE,

dynamic

adjustment

is

disabled.

The

default

value

for

OMP_DYNAMIC

is

TRUE.

Therefore,

if

your

code

needs

to

use

a

specific

number

of

threads

to

run

correctly,

you

should

disable

dynamic

thread

adjustment.

The

omp_set_dynamic

subroutine

takes

precedence

over

the

OMP_DYNAMIC

environment

variable.

OMP_NESTED

Environment

Variable

The

OMP_NESTED

environment

variable

enables

or

disables

nested

parallelism.

The

syntax

is

as

follows:

��

OMP_NESTED=

TRUE

FALSE

��

If

you

set

this

environment

variable

to

TRUE,

nested

parallelism

is

enabled.

This

means

that

the

run-time

environment

might

deploy

extra

threads

to

form

the

team

of

threads

for

the

nested

parallel

region.

If

you

set

this

environment

variable

to

FALSE,

nested

parallelism

is

disabled.

The

default

value

for

OMP_NESTED

is

FALSE.

The

omp_set_nested

subroutine

takes

precedence

over

the

OMP_NESTED

environment

variable.

13

OMP_NUM_THREADS

Environment

Variable

The

OMP_NUM_THREADS

environment

variable

sets

the

number

of

threads

that

a

program

will

use

when

it

runs.

The

syntax

is

as

follows:

��

OMP_NUM_THREADS=

num

��

num

the

maximum

number

of

threads

that

can

be

used

if

dynamic

adjustment

of

the

number

of

threads

is

enabled.

If

dynamic

adjustment

of

the

number

of

threads

is

not

enabled,

the

value

of

OMP_NUM_THREADS

is

the

exact

number

of

threads

that

can

be

used.

It

must

be

a

positive,

scalar

integer.

The

default

number

of

threads

that

a

program

uses

when

it

runs

is

the

number

of

online

processors

on

the

machine.

If

you

specify

the

number

of

threads

with

both

the

PARTHDS

suboption

of

the

XLSMPOPTS

environment

variable

and

the

OMP_NUM_THREADS

environment

variable,

the

OMP_NUM_THREADS

environment

variable

takes

precedence.

The

omp_set_num_threads

subroutine

takes

precedence

over

the

OMP_NUM_THREADS

environment

variable.

The

following

example

shows

how

you

can

set

the

OMP_NUM_THREADS

environment

variable:

export

OMP_NUM_THREADS=16

OMP_SCHEDULE

Environment

Variable

The

OMP_SCHEDULE

environment

variable

applies

to

PARALLEL

DO

and

work-sharing

DO

directives

that

have

a

schedule

type

of

RUNTIME.

The

syntax

is

as

follows:

��

OMP_SCHEDULE=

sched_type

,

chunk_size

��

sched_type

is

either

DYNAMIC,

GUIDED,

or

STATIC.

chunk_size

is

a

positive,

scalar

integer

that

represents

the

chunk

size.

This

environment

variable

is

ignored

for

PARALLEL

DO

and

work-sharing

DO

directives

that

have

a

schedule

type

other

than

RUNTIME.

If

you

have

not

specified

a

schedule

type

either

at

compile

time

(through

a

directive)

or

at

run

time

(through

the

OMP_SCHEDULE

environment

variable

or

the

SCHEDULE

option

of

the

XLSMPOPTS

environment

variable),

the

default

schedule

type

is

STATIC,

and

the

default

chunk

size

is

set

to

the

following

for

the

first

N

-

1

threads:

chunk_size

=

ceiling(Iters/N)

It

is

set

to

the

following

for

the

Nth

thread,

where

N

is

the

total

number

of

threads

and

Iters

is

the

total

number

of

iterations

in

the

DO

loop:

chunk_size

=

Iters

-

((N

-

1)

*

ceiling(Iters/N))

OpenMP

Environment

Variables

14

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

If

you

specify

both

the

SCHEDULE

option

of

the

XLSMPOPTS

environment

variable

and

the

OMP_SCHEDULE

environment

variable,

the

OMP_SCHEDULE

environment

variable

takes

precedence.

The

following

examples

show

how

you

can

set

the

OMP_SCHEDULE

environment

variable:

export

OMP_SCHEDULE="GUIDED,4"

export

OMP_SCHEDULE="DYNAMIC"

OpenMP

Environment

Variables

OpenMP

Environment

Variables

15

OpenMP

Environment

Variables

16

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

SMP

Directives

The

Symmetric

Multiprocessing

(SMP)

Directives

section

contains

the

following

sections:

v

“An

Introduction

to

SMP

Directives”

v

“Detailed

Descriptions

of

SMP

Directives”

on

page

18

v

“OpenMP

Directive

Clauses”

on

page

61

An

Introduction

to

SMP

Directives

The

SMP

directives

described

in

this

section

allow

you

to

exert

control

over

parallelization.

For

example,

the

PARALLEL

DO

directive

specifies

that

the

loop

immediately

following

the

directive

should

be

run

in

parallel.

All

SMP

directives

are

comment

form

directives.

v

To

ensure

that

the

compiler

will

recognize

SMP

directives,

compile

code

using

either

the

xlf_r,

xlf90_r,

or

xlf95_r

invocation

commands,

specifying

the

-qsmp

compiler

option.

See

the

directive

descriptions

found

in

this

section

for

more

details.

v

To

ensure

that

the

compiler

will

link

threadsafe

libraries,

compile

code

using

either

the

xlf_r,

xlf90_r,

or

xlf95_r

invocation

commands.

v

XL

Fortran

supports

the

OpenMP

specification,

as

understood

and

interpreted

by

IBM®.To

ensure

the

greatest

portability

of

code,

we

recommend

that

you

use

these

directives

whenever

possible.

You

should

use

them

with

the

OpenMP

trigger_constant,

$OMP;

but

you

should

not

use

this

trigger_constant

with

any

other

directive.

XL

Fortran

supports

the

following

SMP

directives,

divided

as

follows:

Parallel

Region

Construct

Parallel

constructs

form

the

basis

for

OpenMP

based

parallel

execution

in

XL

Fortran.

The

PARALLEL/END

PARALLEL

directive

pair

forms

a

basic

parallel

construct.

Each

time

an

executing

thread

enters

a

parallel

region,

it

creates

a

team

of

threads

and

becomes

master

of

that

team.

This

allows

parallel

execution

to

take

place

within

that

construct

by

the

threads

in

that

team.

The

following

directives

are

necessary

for

a

parallel

region:

PARALLEL

END

PARALLEL

Work-sharing

Constructs

Work-sharing

constructs

divide

the

execution

of

code

enclosed

by

the

construct

between

threads

in

a

team.

For

work-sharing

to

take

place,

the

construct

must

be

enclosed

within

the

dynamic

extent

of

a

parallel

region.

For

further

information

on

work-sharing

constructs,

see

the

following

directives:

DO

END

DO

SECTIONS

END

SECTIONS

WORKSHARE

END

WORKSHARE

17

Combined

Parallel

Work-sharing

Constructs

A

combined

parallel

work-sharing

construct

allows

you

to

specify

a

parallel

region

that

already

contains

a

single

work-sharing

construct.

These

combined

constructs

are

semantically

identical

to

specifying

a

parallel

construct

enclosing

a

single

work-sharing

construct.

For

more

information

on

implementing

combined

constructs,

see

the

following

directives:

PARALLEL

DO

END

PARALLEL

DO

PARALLEL

SECTIONS

END

PARALLEL

SECTIONS

PARALLEL

WORKSHARE

END

PARALLEL

WORKSHARE

Synchronization

Constructs

The

following

directives

allow

you

to

synchronize

the

execution

of

a

parallel

region

by

multiple

threads

in

a

team:

ATOMIC

BARRIER

CRITICAL

END

CRITICAL

FLUSH

ORDERED

END

ORDERED

Other

OpenMP

Directives

The

following

OpenMP

directives

provide

additional

SMP

functionality:

MASTER

END

MASTER

SINGLE

END

SINGLE

THREADPRIVATE

Non-OpenMP

SMP

Directives

The

following

directives

provide

additional

SMP

functionality:

DO

SERIAL

SCHEDULE

THREADLOCAL

Detailed

Descriptions

of

SMP

Directives

The

following

section

contains

an

alphabetical

list

of

all

SMP

directives

supported

by

XL

Fortran.

For

information

on

directive

clauses,

see

“OpenMP

Directive

Clauses”

on

page

61..

ATOMIC

You

can

use

the

ATOMIC

directive

to

update

a

specific

memory

location

safely

within

a

parallel

region.

When

you

use

ATOMIC,

you

ensure

that

only

one

thread

is

writing

to

the

memory

location

at

a

time,

avoiding

errors

which

might

occur

from

simultaneous

writes

to

the

same

memory

location.

SMP

Directives

18

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

Normally,

you

would

protect

a

shared

variable

within

a

CRITICAL

construct

if

it

is

being

updated

by

more

than

one

thread

at

a

time.

However,

certain

platforms

support

atomic

operations

for

updating

variables.

For

example,

some

platforms

might

support

a

hardware

instruction

that

reads

from

a

memory

location,

calculates

something

and

writes

back

to

the

location

all

in

one

atomic

action.

The

ATOMIC

directive

instructs

the

compiler

to

use

an

atomic

operation

whenever

possible.

Otherwise,

the

compiler

will

use

some

other

mechanism

to

perform

an

atomic

update.

The

ATOMIC

directive

only

takes

effect

if

you

specify

the

-qsmp

compiler

option.

Syntax

where

atomic_statement

is:

update_variable

is

a

scalar

variable

of

intrinsic

type.

intrinsic

is

one

of

max,

min,

iand,

ior

or

ieor.

operator

is

one

of

+,

–,

*,

/,

.AND.,

.OR.,

.EQV.,

.NEQV.

or

.XOR.

expression

is

a

scalar

expression

that

does

not

reference

update_variable.

Rules

The

ATOMIC

directive

applies

only

to

the

statement

which

immediately

follows

it.

The

expression

in

an

atomic_statement

is

not

evaluated

atomically.

You

must

ensure

that

no

race

conditions

exist

in

the

calculation.

All

references

made

using

the

ATOMIC

directive

to

the

storage

location

of

an

update_variable

within

the

entire

program

must

have

the

same

type

and

type

parameters.

The

function

intrinsic,

the

operator

operator,

and

the

assignment

must

be

the

intrinsic

function,

operator

and

assignment

and

not

a

redefined

intrinsic

function,

defined

operator

or

defined

assignment.

Examples

Example

1:

In

the

following

example,

multiple

threads

are

updating

a

counter.

ATOMIC

is

used

to

ensure

that

no

updates

are

lost.

��

ATOMIC

��

��

atomic_statement

��

��

update_variable

=

update_variable

operator

expression

update_variable

=

expression

operator

update_variable

update_variable

=

intrinsic

(

update_variable

,

expression

)

update_variable

=

intrinsic

(

expression

,

update_variable

)

��

ATOMIC

SMP

Directives

19

PROGRAM

P

R

=

0.0

!$OMP

PARALLEL

DO

SHARED(R)

DO

I=1,

10

!$OMP

ATOMIC

R

=

R

+

1.0

END

DO

PRINT

*,R

END

PROGRAM

P

Expected

output:

10.0

Example

2:In

the

following

example,

an

ATOMIC

directive

is

required,

because

it

is

uncertain

which

element

of

array

Y

will

be

updated

in

each

iteration.

PROGRAM

P

INTEGER,

DIMENSION(10)

::

Y,

INDEX

INTEGER

B

Y

=

5

READ(*,*)

INDEX,

B

!$OMP

PARALLEL

DO

SHARED(Y)

DO

I

=

1,

10

!$OMP

ATOMIC

Y(INDEX(I))

=

MIN(Y(INDEX(I)),B)

END

DO

PRINT

*,

Y

END

PROGRAM

P

Input

data:

10

10

8

8

6

6

4

4

2

2

4

Expected

output:

5

4

5

4

5

4

5

4

5

4

Example

3:

The

following

example

is

invalid,

because

you

cannot

use

an

ATOMIC

operation

to

reference

an

array.

PROGRAM

P

REAL

ARRAY(10)

ARRAY

=

0.0

!$OMP

PARALLEL

DO

SHARED(ARRAY)

DO

I

=

1,

10

!$OMP

ATOMIC

ARRAY

=

ARRAY

+

1.0

END

DO

PRINT

*,

ARRAY

END

PROGRAM

P

Example

4:The

following

example

is

invalid.

The

expression

must

not

reference

the

update_variable.

PROGRAM

P

R

=

0.0

!$OMP

PARALLEL

DO

SHARED(R)

DO

I

=

1,

10

!$OMP

ATOMIC

R

=

R

+

R

END

DO

PRINT

*,

R

END

PROGRAM

P

ATOMIC

20

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

Related

Information

v

“CRITICAL

/

END

CRITICAL”

on

page

22

v

“PARALLEL

/

END

PARALLEL”

on

page

33

v

-qsmp

compiler

option

BARRIER

The

BARRIER

directive

enables

you

to

synchronize

all

threads

in

a

team.

When

a

thread

encounters

a

BARRIER

directive,

it

will

wait

until

all

other

threads

in

the

team

reach

the

same

point.

The

BARRIER

directive

only

takes

effect

if

you

specify

the

-qsmp

compiler

option.

Syntax

Rules

A

BARRIER

directive

binds

to

the

closest

dynamically

enclosing

PARALLEL

directive,

if

one

exists.

A

BARRIER

directive

cannot

appear

within

the

dynamic

extent

of

the

CRITICAL,

DO

(work-sharing),

MASTER,

PARALLEL

DO

,

PARALLEL

SECTIONS,

SECTIONS,

SINGLE

and

WORKSHARE

directives.

All

threads

in

the

team

must

encounter

the

BARRIER

directive

if

any

thread

encounters

it.

All

BARRIER

directives

and

work-sharing

constructs

must

be

encountered

in

the

same

order

by

all

threads

in

the

team.

In

addition

to

synchronizing

the

threads

in

a

team,

the

BARRIER

directive

implies

the

FLUSH

directive.

Examples

Example

1:

An

example

of

the

BARRIER

directive

binding

to

the

PARALLEL

directive.

Note:

To

calculate

C,

we

need

to

ensure

that

A

and

B

have

been

completely

assigned

to,

so

threads

need

to

wait.

SUBROUTINE

SUB1

INTEGER

A(1000),

B(1000),

C(1000)

!$OMP

PARALLEL

!$OMP

DO

DO

I

=

1,

1000

A(I)

=

SIN(I*2.5)

END

DO

!$OMP

END

DO

NOWAIT

!$OMP

DO

DO

J

=

1,

10000

B(J)

=

X

+

COS(J*5.5)

END

DO

!$OMP

END

DO

NOWAIT

...

!$OMP

BARRIER

C

=

A

+

B

!$OMP

END

PARALLEL

END

��

BARRIER

��

ATOMIC

SMP

Directives

21

Example

2:

An

example

of

a

BARRIER

directive

that

incorrectly

appears

inside

a

CRITICAL

section.

This

can

result

in

a

deadlock

because

only

one

thread

can

enter

a

CRITICAL

section

at

a

time.

!$OMP

PARALLEL

DEFAULT(SHARED)

!$OMP

CRITICAL

DO

I

=

1,

10

X=

X

+

1

!$OMP

BARRIER

Y=

Y

+

I*I

END

DO

!$OMP

END

CRITICAL

!$OMP

END

PARALLEL

Related

Information

v

“FLUSH”

on

page

27

v

“PARALLEL

/

END

PARALLEL”

on

page

33

v

-qsmp

compiler

option

CRITICAL

/

END

CRITICAL

The

CRITICAL

construct

allows

you

to

define

independent

blocks

of

code

that

are

to

be

run

by

at

most

one

thread

at

a

time.

It

includes

a

CRITICAL

directive

that

is

followed

by

a

block

of

code

and

ends

with

an

END

CRITICAL

directive.

The

CRITICAL

and

END

CRITICAL

directives

only

take

effect

if

you

specify

the

-qsmp

compiler

option

Syntax

lock_name

provides

a

way

of

distinguishing

different

CRITICAL

constructs

of

code.

block

represents

the

block

of

code

to

be

executed

by

at

most

one

thread

at

a

time.

Rules

The

optional

lock_name

is

a

name

with

global

scope.

You

must

not

use

the

lock_name

to

identify

any

other

global

entity

in

the

same

executable

program.

If

you

specify

the

lock_name

on

the

CRITICAL

directive,

you

must

specify

the

same

lock_name

on

the

corresponding

END

CRITICAL

directive.

If

you

specify

the

same

lock_name

for

more

than

one

CRITICAL

construct,

the

compiler

will

allow

only

one

thread

to

execute

any

one

of

these

CRITICAL

constructs

at

any

one

time.

CRITICAL

constructs

that

have

different

lock_names

may

be

run

in

parallel.

��

CRITICAL

(

lock_name

)

��

��

block

��

��

END

CRITICAL

(

lock_name

)

��

BARRIER

22

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

The

same

lock

protects

all

CRITICAL

constructs

that

do

not

have

an

explicit

lock_name.

In

other

words,

the

compiler

will

assign

the

same

lock_name,

thereby

ensuring

that

only

one

thread

enters

any

unnamed

CRITICAL

construct

at

a

time.

The

lock_name

must

not

share

the

same

name

as

any

local

entity

of

Class

1.

It

is

illegal

to

branch

into

or

out

of

a

CRITICAL

construct.

The

CRITICAL

construct

may

appear

anywhere

in

a

program.

Although

it

is

possible

to

nest

a

CRITICAL

construct

within

a

CRITICAL

construct,

a

deadlock

situation

may

result.

The

-qsmp=rec_locks

compiler

option

can

be

used

to

prevent

deadlocks.

The

CRITICAL

and

END

CRITICAL

directives

imply

the

FLUSH

directive.

Examples

Example

1:

Note

that

in

this

example

the

CRITICAL

construct

appears

within

a

DO

loop

that

has

been

marked

with

the

PARALLEL

DO

directive.

EXPR=0

!OMP$

PARALLEL

DO

PRIVATE

(I)

DO

I

=

1,

100

!OMP$

CRITICAL

EXPR

=

EXPR

+

A(I)

*

I

!OMP$

END

CRITICAL

END

DO

Example

2:

An

example

specifying

a

lock_name

on

the

CRITICAL

construct.

!SMP$

PARALLEL

DO

PRIVATE(T)

DO

I

=

1,

100

T

=

B(I)

*

B(I-1)

!SMP$

CRITICAL

(LOCK)

SUM

=

SUM

+

T

!SMP$

END

CRITICAL

(LOCK)

END

DO

Related

Information

v

“FLUSH”

on

page

27

v

“PARALLEL

/

END

PARALLEL”

on

page

33

v

-qsmp

compiler

option.

DO

/

END

DO

The

DO

(work-sharing)

construct

enables

you

to

divide

the

execution

of

the

loop

among

the

members

of

the

team

that

encounter

it.

The

END

DO

directive

enables

you

to

indicate

the

end

of

a

DO

loop

that

is

specified

by

the

DO

(work-sharing)

directive.

The

DO

(work-sharing)

and

END

DO

directives

only

take

effect

when

you

specify

the

-qsmp

compiler

option.

CRITICAL

/

END

CRITICAL

SMP

Directives

23

Syntax

where

do_clause

is:

firstprivate_clause

See

—

“FIRSTPRIVATE”

on

page

67.

lastprivate_clause

See

—

“LASTPRIVATE”

on

page

68.

ordered_clause

See

—

“ORDERED”

on

page

70

private_clause

See

—

“PRIVATE”

on

page

70.

reduction_clause

See

—

“REDUCTION”

on

page

72

schedule_clause

See

—

“SCHEDULE”

on

page

74

Rules

The

first

noncomment

line

(not

including

other

directives)

that

follows

the

DO

(work-sharing)

directive

must

be

a

DO

loop.

This

line

cannot

be

an

infinite

DO

or

DO

WHILE

loop.

The

DO

(work-sharing)

directive

applies

only

to

the

DO

loop

that

is

immediately

following

the

directive,

and

not

to

any

nested

DO

loops.

The

END

DO

directive

is

optional.

If

you

use

the

END

DO

directive,

it

must

immediately

follow

the

end

of

the

DO

loop.

You

may

have

a

DO

construct

that

contains

several

DO

statements.

If

the

DO

statements

share

the

same

DO

termination

statement,

and

an

END

DO

directive

follows

the

construct,

you

can

only

specify

a

work-sharing

DO

directive

for

the

outermost

DO

statement

of

the

construct.

��

�

DO

do_clause

,

��

��

do_loop

��

��

END

DO

NOWAIT

��

��

firstprivate_clause

lastprivate_clause

ordered_clause

private_clause

reduction_clause

schedule_clause

��

DO

/

END

DO

24

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

If

you

specify

NOWAIT

on

the

END

DO

directive,

a

thread

that

completes

its

iterations

of

the

loop

early

will

proceed

to

the

instructions

following

the

loop.

The

thread

will

not

wait

for

the

other

threads

of

the

team

to

complete

the

DO

loop.

If

you

do

not

specify

NOWAIT

on

the

END

DO

directive,

each

thread

will

wait

for

all

other

threads

within

the

same

team

at

the

end

of

the

DO

loop.

If

you

do

not

specify

the

NOWAIT

clause,

the

END

DO

directive

implies

the

FLUSH

directive.

All

threads

in

the

team

must

encounter

the

DO

(work-sharing)

directive

if

any

thread

encounters

it.

A

DO

loop

must

have

the

same

loop

boundary

and

step

value

for

each

thread

in

the

team.

All

work-sharing

constructs

and

BARRIER

directives

that

are

encountered

must

be

encountered

in

the

same

order

by

all

threads

in

the

team.

A

DO

(work-sharing)

directive

must

not

appear

within

the

dynamic

extent

of

a

CRITICAL

or

MASTER

construct.

In

addition,

it

must

not

appear

within

the

dynamic

extent

of

a

PARALLEL

SECTIONS

construct,

work-sharing

construct,

or

PARALLEL

DO

loop,

unless

it

is

within

the

dynamic

extent

of

a

PARALLEL

construct.

You

cannot

follow

a

DO

(work-sharing)

directive

by

another

DO

(work-sharing)

directive.

You

can

only

specify

one

DO

(work-sharing)

directive

for

a

given

DO

loop.

The

DO

(work-sharing)

directive

cannot

appear

with

either

an

INDEPENDENT

or

DO

SERIAL

directive

for

a

given

DO

loop.

Examples

Example

1:

An

example

of

several

independent

DO

loops

within

a

PARALLEL

construct.

No

synchronization

is

performed

after

the

first

work-sharing

DO

loop,

because

NOWAIT

is

specified

on

the

END

DO

directive.

!$OMP

PARALLEL

!$OMP

DO

DO

I

=

2,

N

B(I)=

(A(I)

+

A(I-1))

/

2.0

END

DO

!$OMP

END

DO

NOWAIT

!$OMP

DO

DO

J

=

2,

N

C(J)

=

SQRT(REAL(J*J))

END

DO

!$OMP

END

DO

C(5)

=

C(5)

+

10

!$OMP

END

PARALLEL

END

Example

2:

An

example

of

SHARED,

and

SCHEDULE

clauses.

!$OMP

PARALLEL

SHARED(A)

!$OMP

DO

SCHEDULE(STATIC,10)

DO

I

=

1,

1000

A(I)

=

1

*

4

END

DO

!$OMP

END

DO

!$OMP

END

PARALLEL

Example

3:

An

example

of

both

a

MASTER

and

a

DO

(work-sharing)

directive

that

bind

to

the

closest

enclosing

PARALLEL

directive.

DO

/

END

DO

SMP

Directives

25

!$OMP

PARALLEL

DEFAULT(PRIVATE)

Y

=

100

!$OMP

MASTER

PRINT

*,

Y

!$OMP

END

MASTER

!$OMP

DO

DO

I

=

1,

10

X(I)

=

I

X(I)

=

X(I)

+

Y

END

DO

!$OMP

END

PARALLEL

END

Example

4:

An

example

of

both

the

FIRSTPRIVATE

and

the

LASTPRIVATE

clauses

on

DO

(work-sharing)

directives.

X

=

100

!$OMP

PARALLEL

PRIVATE(I),

SHARED(X,Y)

!$OMP

DO

FIRSTPRIVATE(X),

LASTPRIVATE(X)

DO

I

=

1,

80

Y(I)

=

X

+

I

X

=

I

END

DO

!$OMP

END

PARALLEL

END

Example

6:

A

valid

example

of

a

work-sharing

DO

directive

applied

to

nested

DO

statements

with

a

common

DO

termination

statement.

!$OMP

DO

!

A

work-sharing

DO

directive

can

ONLY

!

precede

the

outermost

DO

statement.

DO

100

I=

1,10

!

!$OMP

DO

Error

!

Placing

the

OMP

DO

directive

here

is

!

invalid

DO

100

J=

1,10

!

...

100

CONTINUE

!$OMP

END

DO

Related

Information

v

“DO

SERIAL”

v

“FLUSH”

on

page

27

v

“ORDERED

/

END

ORDERED”

on

page

30

v

“PARALLEL

/

END

PARALLEL”

on

page

33

v

“PARALLEL

DO

/

END

PARALLEL

DO”

on

page

35

v

“PARALLEL

SECTIONS

/

END

PARALLEL

SECTIONS”

on

page

38

v

“SCHEDULE”

on

page

42

v

-qsmp

compiler

option.

DO

SERIAL

The

DO

SERIAL

directive

indicates

to

the

compiler

that

the

DO

loop

that

is

immediately

following

the

directive

must

not

be

parallelized.

This

directive

is

useful

in

blocking

automatic

parallelization

for

a

particular

DO

loop.

The

DO

SERIAL

directive

only

takes

effect

if

you

specify

the

-qsmp

compiler

option.

DO

/

END

DO

26

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

Syntax

Rules

The

first

noncomment

line

(not

including

other

directives)

that

is

following

the

DO

SERIAL

directive

must

be

a

DO

loop.

The

DO

SERIAL

directive

applies

only

to

the

DO

loop

that

immediately

follows

the

directive

and

not

to

any

loops

that

are

nested

within

that

loop.

You

can

only

specify

one

DO

SERIAL

directive

for

a

given

DO

loop.

The

DO

SERIAL

directive

must

not

appear

with

the

DO,

or

PARALLEL

DO

directive

on

the

same

DO

loop.

White

space

is

optional

between

DO

and

SERIAL.

You

should

not

use

the

OpenMP

trigger

constant

with

this

directive.

Examples

Example

1:

An

example

with

nested

DO

loops

where

the

inner

loop

(the

J

loop)

is

not

parallelized.

!$OMP

PARALLEL

DO

PRIVATE(S,I),

SHARED(A)

DO

I=1,

500

S=0

!SMP$

DOSERIAL

DO

J=1,

500

S=S+1

ENDDO

A(I)=S+I

ENDDO

Example

2:

An

example

with

the

DOSERIAL

directive

applied

in

nested

loops.

In

this

case,

if

automatic

parallelization

is

enabled

the

I

or

K

loop

may

be

parallelized.

DO

I=1,

100

!SMP$

DOSERIAL

DO

J=1,

100

DO

K=1,

100

ARR(I,J,K)=I+J+K

ENDDO

ENDDO

ENDDO

Related

Information

v

“DO

/

END

DO”

on

page

23

v

“PARALLEL

DO

/

END

PARALLEL

DO”

on

page

35

v

-qsmp

compiler

option.

FLUSH

The

FLUSH

directive

ensures

that

each

thread

has

access

to

data

generated

by

other

threads.

This

directive

is

required

because

the

compiler

may

keep

values

in

processor

registers

if

a

program

is

optimized.

The

FLUSH

directive

ensures

that

the

memory

images

that

each

thread

views

are

consistent.

��

DO

SERIAL

��

DO

SERIAL

SMP

Directives

27

The

FLUSH

directive

only

takes

effect

if

you

specify

the

-qsmp

compiler

option.

You

might

be

able

to

improve

the

performance

of

your

program

by

using

the

FLUSH

directive

instead

of

the

VOLATILE

attribute.

The

VOLATILE

attribute

causes

variables

to

be

flushed

after

every

update

and

before

every

use,

while

FLUSH

causes

variables

to

be

written

to

or

read

from

memory

only

when

specified.

Syntax

Rules

You

can

specify

this

directive

anywhere

in

your

code;

however,

if

you

specify

it

outside

of

the

dynamic

extent

of

a

parallel

region,

it

is

ignored.

If

you

specify

a

variable_name_list,

only

the

variables

in

that

list

are

written

to

or

read

from

memory

(assuming

that

they

have

not

been

written

or

read

already).

All

variables

in

the

variable_name_list

must

be

at

the

current

scope

and

must

be

thread

visible.

Thread

visible

variables

can

be

any

of

the

following:

v

Globally

visible

variables

(common

blocks

and

module

data)

v

Local

and

host-associated

variables

with

the

SAVE

attribute

v

Local

variables

without

the

SAVE

attribute

that

are

specified

in

a

SHARED

clause

in

a

parallel

region

within

the

subprogram

v

Local

variables

without

the

SAVE

attribute

that

have

had

their

addresses

taken

v

All

pointer

dereferences

v

Dummy

arguments

If

you

do

not

specify

a

variable_name_list,

all

thread

visible

variables

are

written

to

or

read

from

memory.

When

a

thread

encounters

the

FLUSH

directive,

it

writes

into

memory

the

modifications

to

the

affected

variables.

The

thread

also

reads

the

latest

copies

of

the

variables

from

memory

if

it

has

local

copies

of

those

variables:

for

example,

if

it

has

copies

of

the

variables

in

registers.

It

is

not

mandatory

for

all

threads

in

a

team

to

use

the

FLUSH

directive.

However,

to

guarantee

that

all

thread

visible

variables

are

current,

any

thread

that

modifies

a

thread

visible

variable

should

use

the

FLUSH

directive

to

update

the

value

of

that

variable

in

memory.

If

you

do

not

use

FLUSH

or

one

of

the

directives

that

implies

FLUSH

(see

below),

the

value

of

the

variable

might

not

be

the

most

recent

one.

Note

that

FLUSH

is

not

atomic.

You

must

FLUSH

shared

variables

that

are

controlled

by

a

shared

lock

variable

with

one

directive

and

then

FLUSH

the

lock

variable

with

another.

This

guarantees

that

the

shared

variables

are

written

before

the

lock

variable.

The

following

directives

imply

a

FLUSH

directive

unless

you

specify

a

NOWAIT

clause

for

those

directives

to

which

it

applies:

v

BARRIER

��

FLUSH

(

variable_name_list

)

��

FLUSH

28

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

v

CRITICAL/END

CRITICAL

v

DO/END

DO

v

END

SECTIONS

v

END

SINGLE

v

PARALLEL/END

PARALLEL

v

PARALLEL

DO/END

PARALLEL

DO

v

PARALLEL

SECTIONS/END

PARALLEL

SECTIONS

v

PARALLEL

WORKSHARE/END

PARALLEL

WORKSHARE

v

ORDERED/END

ORDERED

Examples

Example

1:

In

the

following

example,

two

threads

perform

calculations

in

parallel

and

are

synchronized

when

the

calculations

are

complete:

PROGRAM

P

INTEGER

INSYNC(0:1),

IAM

!$OMP

PARALLEL

DEFAULT(PRIVATE)

SHARED(INSYNC)

IAM

=

OMP_GET_THREAD_NUM()

INSYNC(IAM)

=

0

!$OMP

BARRIER

CALL

WORK

!$OMP

FLUSH(INSYNC)

INSYNC(IAM)

=

1

!

Each

thread

sets

a

flag

!

once

it

has

!$OMP

FLUSH(INSYNC)

!

completed

its

work.

DO

WHILE

(INSYNC(1-IAM)

.eq.

0)

!

One

thread

waits

for

!

another

to

complete

!$OMP

FLUSH(INSYNC)

!

its

work.

END

DO

!$OMP

END

PARALLEL

END

PROGRAM

P

SUBROUTINE

WORK

!

Each

thread

does

indep-

!

endent

calculations.

!

...

!$OMP

FLUSH

!

flush

work

variables

!

before

INSYNC

!

is

flushed.

END

SUBROUTINE

WORK

Example

2:

The

following

example

is

not

valid,

because

it

attempts

to

use

FLUSH

with

a

variable

that

is

not

thread

visible:

FUNCTION

F()

INTEGER,

AUTOMATIC

::

i

!$OMP

FLUSH(I)

END

FUNCTION

F

MASTER

/

END

MASTER

The

MASTER

construct

enables

you

to

define

a

block

of

code

that

will

be

run

by

only

the

master

thread

of

the

team.

It

includes

a

MASTER

directive

that

precedes

a

block

of

code

and

ends

with

an

END

MASTER

directive.

The

MASTER

and

END

MASTER

directives

only

take

effect

if

you

specify

the

-qsmp

compiler

option.

FLUSH

SMP

Directives

29

Syntax

block

represents

the

block

of

code

that

will

be

run

by

the

master

thread

of

the

team.

Rules

It

is

illegal

to

branch

into

or

out

of

a

MASTER

construct.

A

MASTER

directive

binds

to

the

closest

dynamically

enclosing

PARALLEL

directive,

if

one

exists.

A

MASTER

directive

cannot

appear

within

the

dynamic

extent

of

a

work-sharing

construct

or

within

the

dynamic

extent

of

the

PARALLEL

DO,

PARALLEL

SECTIONS,

and

PARALLEL

WORKSHARE

directives.

No

implied

barrier

exists

on

entry

to,

or

exit

from,

the

MASTER

construct.

Examples

Example

1:

An

example

of

the

MASTER

directive

binding

to

the

PARALLEL

directive.

!$OMP

PARALLEL

DEFAULT(SHARED)

!$OMP

MASTER

Y

=

10.0

X

=

0.0

DO

I

=

1,

4

X

=

X

+

COS(Y)

+

I

END

DO

!$OMP

END

MASTER

!$OMP

BARRIER

!$OMP

DO

PRIVATE(J)

DO

J

=

1,

10000

A(J)

=

X

+

SIN(J*2.5)

END

DO

!$OMP

END

DO

!$OMP

END

PARALLEL

END

Related

Information

v

“PARALLEL

DO

/

END

PARALLEL

DO”

on

page

35

v

“PARALLEL

SECTIONS

/

END

PARALLEL

SECTIONS”

on

page

38

v

-qsmp

compiler

option.

ORDERED

/

END

ORDERED

The

ORDERED

/

END

ORDERED

directives

cause

the

iterations

of

a

block

of

code

within

a

parallel

loop

to

be

executed

in

the

order

that

the

loop

would

execute

��

MASTER

��

��

block

��

��

END

MASTER

��

MASTER

/

END

MASTER

30

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

in

if

it

was

run

sequentially.

You

can

force

the

code

inside

the

ORDERED

construct

to

run

in

a

predictable

order

while

code

outside

of

the

construct

runs

in

parallel.

The

ORDERED

and

END

ORDERED

directives

only

take

effect

if

you

specify

the

-qsmp

compiler

option.

Syntax

block

represents

the

block

of

code

that

will

be

executed

in

sequence.

Rules

The

ORDERED

directive

can

only

appear

in

the

dynamic

extent

of

a

DO

or

PARALLEL

DO

directive.

It

is

illegal

to

branch

into

or

out

of

an

ORDERED

construct.

The

ORDERED

directive

binds

to

the

nearest

dynamically

enclosing

DO

or

PARALLEL

DO

directive.

You

must

specify

the

ORDERED

clause

on

the

DO

or

PARALLEL

DO

directive

to

which

the

ORDERED

construct

binds.

ORDERED

constructs

that

bind

to

different

DO

directives

are

independent

of

each

other.

Only

one

thread

can

execute

an

ORDERED

construct

at

a

time.

Threads

enter

the

ORDERED

construct

in

the

order

of

the

loop

iterations.

A

thread

will

enter

the

ORDERED

construct

if

all

of

the

previous

iterations

have

either

executed

the

construct

or

will

never

execute

the

construct.

Each

iteration

of

a

parallel

loop

with

an

ORDERED

construct

can

only

execute

that

ORDERED

construct

once.

Each

iteration

of

a

parallel

loop

can

execute

at

most

one

ORDERED

directive.

An

ORDERED

construct

cannot

appear

within

the

dynamic

extent

of

a

CRITICAL

construct.

Examples

Example

1:

In

this

example,

an

ORDERED

parallel

loop

counts

down.

PROGRAM

P

!$OMP

PARALLEL

DO

ORDERED

DO

I

=

3,

1,

-1

!$OMP

ORDERED

PRINT

*,I

!$OMP

END

ORDERED

END

DO

END

PROGRAM

P

The

expected

output

of

this

program

is:

��

ORDERED

��

��

block

��

��

END

ORDERED

��

MASTER

/

END

MASTER

SMP

Directives

31

3

2

1

Example

2:

This

example

shows

a

program

with

two

ORDERED

constructs

in

a

parallel

loop.

Each

iteration

can

only

execute

a

single

section.

PROGRAM

P

!$OMP

PARALLEL

DO

ORDERED

DO

I

=

1,

3

IF

(MOD(I,2)

==

0)

THEN

!$OMP

ORDERED

PRINT

*,

I*10

!$OMP

END

ORDERED

ELSE

!$OMP

ORDERED

PRINT

*,

I

!$OMP

END

ORDERED

END

IF

END

DO

END

PROGRAM

P

The

expected

output

of

this

program

is:

1

20

3

Example

3:

In

this

example,

the

program

computes

the

sum

of

all

elements

of

an

array

that

are

greater

than

a

threshold.

ORDERED

is

used

to

ensure

that

the

results

are

always

reproducible:

roundoff

will

take

place

in

the

same

order

every

time

the

program

is

executed,

so

the

program

will

always

produce

the

same

results.

PROGRAM

P

REAL

::

A(1000)

REAL

::

THRESHOLD

=

999.9

REAL

::

SUM

=

0.0

!$OMP

PARALLEL

DO

ORDERED

DO

I

=

1,

1000

IF

(A(I)

>

THRESHOLD)

THEN

!$OMP

ORDERED

SUM

=

SUM

+

A(I)

!$OMP

END

ORDERED

END

IF

END

DO

END

PROGRAM

P

Note:

To

avoid

bottleneck

situations

when

using

the

ORDERED

clause,

you

can

try

using

DYNAMIC

scheduling

or

STATIC

scheduling

with

a

small

chunk

size.

See

“SCHEDULE”

on

page

42

for

more

information.

Related

Information

v

“PARALLEL

DO

/

END

PARALLEL

DO”

on

page

35

v

“DO

/

END

DO”

on

page

23

v

“CRITICAL

/

END

CRITICAL”

on

page

22

v

“SCHEDULE”

on

page

42

v

-qsmp

compiler

option.

MASTER

/

END

MASTER

32

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

PARALLEL

/

END

PARALLEL

The

PARALLEL

construct

enables

you

to

define

a

block

of

code

that

can

be

executed

by

a

team

of

threads

concurrently.

The

PARALLEL

construct

includes

a

PARALLEL

directive

that

is

followed

by

one

or

more

blocks

of

code,

and

ends

with

an

END

PARALLEL

directive.

The

PARALLEL

and

END

PARALLEL

directives

only

take

effect

if

you

specify

the

-qsmp

compiler

option.

Syntax

where

parallel_clause

is:

copyin_clause

See

—

“COPYIN”

on

page

63

default_clause

See

—

“DEFAULT”

on

page

64

if_clause

See

—

“IF”

on

page

66

firstprivate_clause

See

—

“FIRSTPRIVATE”

on

page

67.

num_threads_clause

See

—

“NUM_THREADS”

on

page

69.

private_clause

See

—

“PRIVATE”

on

page

70.

reduction_clause

See

—

“REDUCTION”

on

page

72

��

�

PARALLEL

parallel_clause

,

��

��

block

��

��

END

PARALLEL

��

��

copyin_clause

default_clause

firstprivate_clause

IF

(

scalar_logical_expr

)

num_threads_clause

private_clause

reduction_clause

shared_clause

��

MASTER

/

END

MASTER

SMP

Directives

33

shared_clause

See

—

“SHARED”

on

page

76

Rules

It

is

illegal

to

branch

into

or

out

of

a

PARALLEL

construct.

The

IF

and

DEFAULT

clauses

can

appear

at

most

once

in

a

PARALLEL

directive.

You

should

be

careful

when

you

perform

input/output

operations

in

a

parallel

region.

If

multiple

threads

execute

a

Fortran

I/O

statement

on

the

same

unit,

you

should

make

sure

that

the

threads

are

synchronized.

If

you

do

not,

the

behavior

is

undefined.

Also

note

that

although

in

the

XL

Fortran

implementation

each

thread

has

exclusive

access

to

the

I/O

unit,

the

OpenMP

specification

does

not

require

exclusive

access.

Directives

that

bind

to

a

parallel

region

will

bind

to

that

parallel

region

even

if

it

is

serialized.

The

END

PARALLEL

directive

implies

the

FLUSH

directive.

Examples

Example

1:

An

example

of

an

inner

PARALLEL

directive

with

the

PRIVATE

clause

enclosing

the

PARALLEL

construct.

Note:

The

SHARED

clause

is

present

on

the

inner

PARALLEL

construct.

!$OMP

PARALLEL

PRIVATE(X)

!$OMP

DO

DO

I

=

1,

10

X(I)

=

I

!$OMP

PARALLEL

SHARED

(X,Y)

!$OMP

DO

DO

K

=

1,

10

Y(K,I)=

K

*

X(I)

END

DO

!$OMP

END

DO

!$OMP

END

PARALLEL

END

DO

!$OMP

END

DO

!$OMP

END

PARALLEL

Example

2:

An

example

showing

that

a

variable

cannot

appear

in

both

a

PRIVATE,

and

SHARED

clause.

!$OMP

PARALLEL

PRIVATE(A),

SHARED(A)

!$OMP

DO

DO

I

=

1,

1000

A(I)

=

I

*

I

END

DO

!$OMP

END

DO

!$OMP

END

PARALLEL

Example

3:

This

example

demonstrates

the

use

of

the

COPYIN

clause.

Each

thread

created

by

the

PARALLEL

directive

has

its

own

copy

of

the

common

block

BLOCK.

The

COPYIN

clause

causes

the

initial

value

of

FCTR

to

be

copied

into

the

threads

that

execute

iterations

of

the

DO

loop.

PROGRAM

TT

COMMON

/BLOCK/

FCTR

INTEGER

::

I,

FCTR

!$OMP

THREADPRIVATE(/BLOCK/)

INTEGER

::

A(100)

FCTR

=

-1

MASTER

/

END

MASTER

34

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

A

=

0

!$OMP

PARALLEL

COPYIN(FCTR)

!$OMP

DO

DO

I=1,

100

FCTR

=

FCTR

+

I

CALL

SUB(A(I),

I)

ENDDO

!$OMP

END

PARALLEL

PRINT

*,

A

END

PROGRAM

SUBROUTINE

SUB(AA,

J)

INTEGER

::

FCTR,

AA,

J

COMMON

/BLOCK/

FCTR

!$OMP

THREADPRIVATE(/BLOCK/)

!

EACH

THREAD

GETS

ITS

OWN

COPY

!

OF

BLOCK.

AA

=

FCTR

FCTR

=

FCTR

-

J

END

SUBROUTINE

SUB

The

expected

output

is:

0

1

2

3

...

96

97

98

99

Related

Information

v

“FLUSH”

on

page

27

v

“PARALLEL

DO

/

END

PARALLEL

DO”

v

“THREADPRIVATE”

on

page

54

v

“DO

/

END

DO”

on

page

23

v

-qsmp

compiler

option.

PARALLEL

DO

/

END

PARALLEL

DO

The

PARALLEL

DO

directive

enables

you

to

specify

which

loops

the

compiler

should

parallelize.

This

is

semantically

equivalent

to:

!$OMP

PARALLEL

!$OMP

DO

...

!$OMP

ENDDO

!$OMP

END

PARALLEL

and

is

a

convenient

way

of

parallelizing

loops.

The

END

PARALLEL

DO

directive

allows

you

to

indicate

the

end

of

a

DO

loop

that

is

specified

by

the

PARALLEL

DO

directive.

The

PARALLEL

DO

and

END

PARALLEL

DO

directives

only

take

effect

if

you

specify

the

-qsmp

compiler

option.

MASTER

/

END

MASTER

SMP

Directives

35

Syntax

where

parallel_do_clause

is:

copyin_clause

See

—

“COPYIN”

on

page

63

default_clause

See

—

“DEFAULT”

on

page

64

if_clause

See

—

“IF”

on

page

66.

firstprivate_clause

See

—

“FIRSTPRIVATE”

on

page

67.

lastprivate_clause

See

—

“LASTPRIVATE”

on

page

68.

num_threads_clause

See

—

“NUM_THREADS”

on

page

69.

ordered_clause

See

—

“ORDERED”

on

page

70

private_clause

See

—

“PRIVATE”

on

page

70

reduction_clause

See

—

“REDUCTION”

on

page

72

��

�

PARALLEL

DO

parallel_do_clause

,

��

��

parallel_do_loop

��

��

END

PARALLEL

DO

��

��

copyin_clause

default_clause

firstprivate_clause

IF

(

scalar_logical_expr

)

lastprivate_clause

num_threads_clause

ordered_clause

private_clause

reduction_clause

SCHEDULE

(

sched_type

)

,n

shared_clause

��

PARALLEL

DO

/

END

PARALLEL

DO

36

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

schedule_clause

See

—

“SCHEDULE”

on

page

74

shared_clause

See

—

“SHARED”

on

page

76

Rules

The

first

noncomment

line

(not

including

other

directives)

that

is

following

the

PARALLEL

DO

directive

must

be

a

DO

loop.

This

line

cannot

be

an

infinite

DO

or

DO

WHILE

loop.

The

PARALLEL

DO

directive

applies

only

to

the

DO

loop

that

is

immediately

following

the

directive,

and

not

to

any

nested

DO

loops.

If

you

specify

a

DO

loop

by

a

PARALLEL

DO

directive,

the

END

PARALLEL

DO

directive

is

optional.

If

you

use

the

END

PARALLEL

DO

directive,

it

must

immediately

follow

the

end

of

the

DO

loop.

You

may

have

a

DO

construct

that

contains

several

DO

statements.

If

the

DO

statements

share

the

same

DO

termination

statement,

and

an

END

PARALLEL

DO

directive

follows

the

construct,

you

can

only

specify

a

PARALLEL

DO

directive

for

the

outermost

DO

statement

of

the

construct.

You

must

not

follow

the

PARALLEL

DO

directive

by

a

DO

(work-sharing)

or

DO

SERIAL

directive.

You

can

specify

only

one

PARALLEL

DO

directive

for

a

given

DO

loop.

All

work-sharing

constructs

and

BARRIER

directives

that

are

encountered

must

be

encountered

in

the

same

order

by

all

threads

in

the

team.

The

PARALLEL

DO

directive

must

not

appear

with

the

INDEPENDENT

directive

for

a

given

DO

loop.

Note:

The

INDEPENDENT

directive

allows

you

to

keep

your

code

common

with

HPF

implementations.

Use

the

PARALLEL

DO

directive

for

maximum

portability

across

multiple

vendors.

The

PARALLEL

DO

directive

is

a

prescriptive

directive,

while

the

INDEPENDENT

directive

is

an

assertion

about

the

characteristics

of

the

loop.

The

IF

clause

may

appear

at

most

once

in

a

PARALLEL

DO

directive.

An

IF

expression

is

evaluated

outside

of

the

context

of

the

parallel

construct.

Any

function

reference

in

the

IF

expression

must

not

have

side

effects.

By

default,

a

nested

parallel

loop

is

serialized,

regardless

of

the

setting

of

the

IF

clause.

You

can

change

this

default

by

using

the

-qsmp=nested_par

compiler

option.

If

the

REDUCTION

variable

of

an

inner

DO

loop

appears

in

the

PRIVATE

or

LASTPRIVATE

clause

of

an

enclosing

DO

loop

or

PARALLEL

SECTIONS

construct,

the

variable

must

be

initialized

before

the

inner

DO

loop.

A

variable

that

appears

in

the

REDUCTION

clause

of

an

INDEPENDENT

directive

of

an

enclosing

DO

loop

must

not

also

appear

in

the

data_scope_entity_list

of

the

PRIVATE

or

LASTPRIVATE

clause.

You

should

be

careful

when

you

perform

input/output

operations

in

a

parallel

region.

If

multiple

threads

execute

a

Fortran

I/O

statement

on

the

same

unit,

you

should

make

sure

that

the

threads

are

synchronized.

If

you

do

not,

the

behavior

is

PARALLEL

DO

/

END

PARALLEL

DO

SMP

Directives

37

undefined.

Also

note

that

although

in

the

XL

Fortran

implementation

each

thread

has

exclusive

access

to

the

I/O

unit,

the

OpenMP

specification

does

not

require

exclusive

access.

Directives

that

bind

to

a

parallel

region

will

bind

to

that

parallel

region

even

if

it

is

serialized.

Examples

Example

1:

A

valid

example

with

the

LASTPRIVATE

clause.

!$OMP

PARALLEL

DO

PRIVATE(I),

LASTPRIVATE

(X)

DO

I

=

1,10

X

=

I

*

I

A(I)

=

X

*

B(I)

END

DO

PRINT

*,

X

!

X

has

the

value

100

Example

2:

A

valid

example

with

the

REDUCTION

clause.

!$OMP

PARALLEL

DO

PRIVATE(I),

REDUCTION(+:MYSUM)

DO

I

=

1,

10

MYSUM

=

MYSUM

+

IARR(I)

END

DO

Example

3:

A

valid

example

where

more

than

one

thread

accesses

a

variable

that

is

marked

as

SHARED,

but

the

variable

is

used

only

in

a

CRITICAL

construct.

!$OMP

PARALLEL

DO

SHARED

(X)

DO

I

=

1,

10

A(I)

=

A(I)

*

I

!$OMP

CRITICAL

X

=

X

+

A(I)

!$OMP

END

CRITICAL

END

DO

Example

4:

A

valid

example

of

the

END

PARALLEL

DO

directive.

REAL

A(100),

B(2:100),

C(100)

!$OMP

PARALLEL

DO

DO

I

=

2,

100

B(I)

=

(A(I)

+

A(I-1))/2.0

END

DO

!$OMP

END

PARALLEL

DO

!$OMP

PARALLEL

DO

DO

J

=

1,

100

C(J)

=

X

+

COS(J*5.5)

END

DO

!$OMP

END

PARALLEL

DO

END

Related

Information

v

“DO

/

END

DO”

on

page

23

v

“ORDERED

/

END

ORDERED”

on

page

30

v

“PARALLEL

/

END

PARALLEL”

on

page

33

v

“PARALLEL

SECTIONS

/

END

PARALLEL

SECTIONS”

v

“SCHEDULE”

on

page

42

v

“THREADPRIVATE”

on

page

54

v

-qsmp

compiler

option.

PARALLEL

SECTIONS

/

END

PARALLEL

SECTIONS

The

PARALLEL

SECTIONS

construct

enables

you

to

define

independent

blocks

of

code

that

the

compiler

can

execute

concurrently.

The

PARALLEL

SECTIONS

PARALLEL

DO

/

END

PARALLEL

DO

38

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

construct

includes

a

PARALLEL

SECTIONS

directive

followed

by

one

or

more

blocks

of

code

delimited

by

the

SECTION

directive,

and

ends

with

an

END

PARALLEL

SECTIONS

directive.

The

PARALLEL

SECTIONS,

SECTION

and

END

PARALLEL

SECTIONS

directives

only

take

effect

if

you

specify

the

-qsmp

compiler

option.

Syntax

where

parallel_sections_clause

is:

copyin_clause

See

—

“COPYIN”

on

page

63

default_clause

See

—

“DEFAULT”

on

page

64

firstprivate_clause

See

—

“FIRSTPRIVATE”

on

page

67.

if_clause

See

—

“IF”

on

page

66

lastprivate_clause

See

—

“LASTPRIVATE”

on

page

68.

num_threads_clause

See

—

“NUM_THREADS”

on

page

69.

private_clause

See

—

“PRIVATE”

on

page

70.

��

�

PARALLEL

SECTIONS

parallel_sections_clause

,

��

��

�

block

SECTION

SECTION

block

��

��

END

PARALLEL

SECTIONS

��

��

copyin_clause

default_clause

firstprivate_clause

IF

(

scalar_logical_expr

)

lastprivate_clause

num_threads_clause

private_clause

reduction_clause

shared_clause

��

PARALLEL

DO

/

END

PARALLEL

DO

SMP

Directives

39

reduction_clause

See

—

“REDUCTION”

on

page

72

shared_clause

See

—

“SHARED”

on

page

76

Rules

The

PARALLEL

SECTIONS

construct

includes

the

delimiting

directives,

and

the

blocks

of

code

they

enclose.

The

rules

below

also

refer

to

sections.

You

define

a

section

as

the

block

of

code

within

the

delimiting

directives.

The

SECTION

directive

marks

the

beginning

of

a

block

of

code.

At

least

one

SECTION

and

its

block

of

code

must

appear

within

the

PARALLEL

SECTIONS

construct.

Note,

however,

that

you

do

not

have

to

specify

the

SECTION

directive

for

the

first

section.

The

end

of

a

block

is

delimited

by

either

another

SECTION

directive

or

by

the

END

PARALLEL

SECTIONS

directive.

You

can

use

the

PARALLEL

SECTIONS

construct

to

specify

parallel

execution

of

the

identified

sections

of

code.

There

is

no

assumption

as

to

the

order

in

which

sections

are

executed.

Each

section

must

not

interfere

with

any

other

section

in

the

construct

unless

the

interference

occurs

within

a

CRITICAL

construct.

It

is

illegal

to

branch

into

or

out

of

any

block

of

code

that

is

defined

by

the

PARALLEL

SECTIONS

construct.

The

compiler

determines

how

to

divide

the

work

among

the

threads

based

on

a

number

of

factors,

such

as

the

number

of

threads

and

the

number

of

sections

to

be

executed

in

parallel.

Therefore,

a

single

thread

may

execute

more

than

one

SECTION,

or

a

thread

may

not

execute

any

SECTION.

All

work-sharing

constructs

and

BARRIER

directives

that

are

encountered

must

be

encountered

in

the

same

order

by

all

threads

in

the

team.

Within

a

PARALLEL

SECTIONS

construct,

variables

that

are

not

appearing

in

the

PRIVATE

clause

are

assumed

to

be

SHARED

by

default.

In

a

PARALLEL

SECTIONS

construct,

a

variable

that

appears

in

the

REDUCTION

clause

of

an

INDEPENDENT

directive

or

the

PARALLEL

DO

directive

of

an

enclosing

DO

loop

must

not

also

appear

in

the

data_scope_entity_list

of

the

PRIVATE

clause.

If

the

REDUCTION

variable

of

the

inner

PARALLEL

SECTIONS

construct

appears

in

the

PRIVATE

clause

of

an

enclosing

DO

loop

or

PARALLEL

SECTIONS

construct,

the

variable

must

be

initialized

before

the

inner

PARALLEL

SECTIONS

construct.

The

PARALLEL

SECTIONS

construct

must

not

appear

within

a

CRITICAL

construct.

You

should

be

careful

when

you

perform

input/output

operations

in

a

parallel

region.

If

multiple

threads

execute

a

Fortran

I/O

statement

on

the

same

unit,

you

should

make

sure

that

the

threads

are

synchronized.

If

you

do

not,

the

behavior

is

undefined.

Also

note

that

although

in

the

XL

Fortran

implementation

each

thread

has

exclusive

access

to

the

I/O

unit,

the

OpenMP

specification

does

not

require

exclusive

access.

PARALLEL

DO

/

END

PARALLEL

DO

40

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

Directives

that

bind

to

a

parallel

region

will

bind

to

that

parallel

region

even

if

it

is

serialized.

The

END

PARALLEL

SECTIONS

directive

implies

the

FLUSH

directive.

Examples

Example

1:

!$OMP

PARALLEL

SECTIONS

!$OMP

SECTION

DO

I

=

1,

10

C(I)

=

MAX(A(I),A(I+1))

END

DO

!$OMP

SECTION

W

=

U

+

V

Z

=

X

+

Y

!$OMP

END

PARALLEL

SECTIONS

Example

2:

In

this

example,

the

index

variable

I

is

declared

as

PRIVATE.

Note

also

that

the

first

optional

SECTION

directive

has

been

omitted.

!$OMP

PARALLEL

SECTIONS

PRIVATE(I)

DO

I

=

1,

100

A(I)

=

A(I)

*

I

END

DO

!$OMP

SECTION

CALL

NORMALIZE

(B)

DO

I

=

1,

100

B(I)

=

B(I)

+

1.0

END

DO

!$OMP

SECTION

DO

I

=

1,

100

C(I)

=

C(I)

*

C(I)

END

DO

!$OMP

END

PARALLEL

SECTIONS

Example

3:

This

example

is

invalid

because

there

is

a

data

dependency

for

the

variable

C

across

sections.

!$OMP

PARALLEL

SECTIONS

!$OMP

SECTION

DO

I

=

1,

10

C(I)

=

C(I)

*

I

END

DO

!$OMP

SECTION

DO

K

=

1,

10

D(K)

=

C(K)

+

K

END

DO

!$OMP

END

PARALLEL

SECTIONS

Related

Information

v

“PARALLEL

/

END

PARALLEL”

on

page

33

v

“PARALLEL

DO

/

END

PARALLEL

DO”

on

page

35

v

“THREADPRIVATE”

on

page

54

v

-qsmp

compiler

option.

PARALLEL

WORKSHARE

/

END

PARALLEL

WORKSHARE

The

PARALLEL

WORKSHARE

construct

provides

a

short

form

method

for

including

a

WORKSHARE

directive

inside

a

PARALLEL

construct.

PARALLEL

DO

/

END

PARALLEL

DO

SMP

Directives

41

Syntax

where

parallel_workshare_clause

is

any

of

the

directives

accepted

by

either

the

PARALLEL

or

WORKSHARE

directives.

Related

Information

v

“PARALLEL

/

END

PARALLEL”

on

page

33

v

“WORKSHARE”

on

page

58

SCHEDULE

The

SCHEDULE

directive

allows

the

user

to

specify

the

chunking

method

for

parallelization.

Work

is

assigned

to

threads

in

different

manners

depending

on

the

scheduling

type

or

chunk

size

used.

The

SCHEDULE

directive

only

takes

effect

if

you

specify

the

-qsmp

Option

compiler

option.

Syntax

n

n

must

be

a

positive,

specification

expression.You

must

not

specify

n

for

the

sched_type

RUNTIME.

sched_type

is

AFFINITY,

DYNAMIC,

GUIDED,

RUNTIME,

or

STATIC

For

more

information

on

sched_type

parameters,

see

the

SCHEDULE

clause.

number_of_iterations

is

the

number

of

iterations

in

the

loop

to

be

parallelized.

number_of_threads

is

the

number

of

threads

used

by

the

program.

Rules

The

SCHEDULE

directive

must

appear

in

the

specification

part

of

a

scoping

unit.

Only

one

SCHEDULE

directive

may

appear

in

the

specification

part

of

a

scoping

unit.

��

�

PARALLEL

WORKSHARE

parallel_workshare_clause

,

��

��

block

��

��

END

PARALLEL

WORKSHARE

��

��

SCHEDULE

(

sched_type

)

,

n

��

PARALLEL

DO

/

END

PARALLEL

DO

42

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

The

SCHEDULE

directive

applies

to

one

of

the

following:

v

All

loops

in

the

scoping

unit

that

do

not

already

have

explicit

scheduling

types

specified.

Individual

loops

can

have

scheduling

types

specified

using

the

SCHEDULE

clause

of

the

PARALLEL

DO

directive.

v

Loops

that

the

compiler

generates

and

have

been

chosen

to

be

parallelized

by

automatic

parallelization.

For

example,

the

SCHEDULE

directive

applies

to

loops

generated

for

FORALL,

WHERE,

I/O

implied-DO,

and

array

constructor

implied-DO.

Any

dummy

arguments

appearing

or

referenced

in

the

specification

expression

for

the

chunk

size

n

must

also

appear

in

the

SUBROUTINE

or

FUNCTION

statement

and

in

all

ENTRY

statements

appearing

in

the

given

subprogram.

If

the

specified

chunk

size

n

is

greater

than

the

number

of

iterations,

the

loop

will

not

be

parallelized

and

will

execute

on

a

single

thread.

If

you

specify

more

than

one

method

of

determining

the

chunking

algorithm,

the

compiler

will

follow,

in

order

of

precedence:

1.

SCHEDULE

clause

to

the

PARALLEL

DO

directive.

2.

SCHEDULE

directive

3.

schedule

suboption

to

the

-qsmp

compiler

option.

4.

XLSMPOPTS

run-time

option.

5.

run-time

default

(that

is,

STATIC)

Examples

Example

1.

Given

the

following

information:

number

of

iterations

=

1000

number

of

threads

=

4

and

using

the

GUIDED

scheduling

type,

the

chunk

sizes

would

be

as

follows:

250

188

141

106

79

59

45

33

25

19

14

11

8

6

4

3

3

2

1

1

1

1

The

iterations

would

then

be

divided

into

the

following

chunks:

chunk

1

=

iterations

1

to

250

chunk

2

=

iterations

251

to

438

chunk

3

=

iterations

439

to

579

chunk

4

=

iterations

580

to

685

chunk

5

=

iterations

686

to

764

chunk

6

=

iterations

765

to

823

chunk

7

=

iterations

824

to

868

chunk

8

=

iterations

869

to

901

chunk

9

=

iterations

902

to

926

chunk

10

=

iterations

927

to

945

chunk

11

=

iterations

946

to

959

chunk

12

=

iterations

960

to

970

chunk

13

=

iterations

971

to

978

chunk

14

=

iterations

979

to

984

chunk

15

=

iterations

985

to

988

chunk

16

=

iterations

989

to

991

chunk

17

=

iterations

992

to

994

chunk

18

=

iterations

995

to

996

chunk

19

=

iterations

997

to

997

chunk

20

=

iterations

998

to

998

chunk

21

=

iterations

999

to

999

chunk

22

=

iterations

1000

to

1000

A

possible

scenario

for

the

division

of

work

could

be:

PARALLEL

DO

/

END

PARALLEL

DO

SMP

Directives

43

thread

1

executes

chunks

1

5

10

13

18

20

thread

2

executes

chunks

2

7

9

14

16

22

thread

3

executes

chunks

3

6

12

15

19

thread

4

executes

chunks

4

8

11

17

21

Example

2.

Given

the

following

information:

number

of

iterations

=

100

number

of

threads

=

4

and

using

the

AFFINITY

scheduling

type,

the

iterations

would

be

divided

into

the

following

partitions:

partition

1

=

iterations

1

to

25

partition

2

=

iterations

26

to

50

partition

3

=

iterations

51

to

75

partition

4

=

iterations

76

to

100

The

partitions

would

be

divided

into

the

following

chunks:

chunk

1a

=

iterations

1

to

13

chunk

1b

=

iterations

14

to

19

chunk

1c

=

iterations

20

to

22

chunk

1d

=

iterations

23

to

24

chunk

1e

=

iterations

25

to

25

chunk

2a

=

iterations

26

to

38

chunk

2b

=

iterations

39

to

44

chunk

2c

=

iterations

45

to

47

chunk

2d

=

iterations

48

to

49

chunk

2e

=

iterations

50

to

50

chunk

3a

=

iterations

51

to

63

chunk

3b

=

iterations

64

to

69

chunk

3c

=

iterations

70

to

72

chunk

3d

=

iterations

73

to

74

chunk

3e

=

iterations

75

to

75

chunk

4a

=

iterations

76

to

88

chunk

4b

=

iterations

89

to

94

chunk

4c

=

iterations

95

to

97

chunk

4d

=

iterations

98

to

99

chunk

4e

=

iterations

100

to

100

A

possible

scenario

for

the

division

of

work

could

be:

thread

1

executes

chunks

1a

1b

1c

1d

1e

4d

thread

2

executes

chunks

2a

2b

2c

2d

thread

3

executes

chunks

3a

3b

3c

3d

3e

2e

thread

4

executes

chunks

4a

4b

4c

4e

In

this

scenario,

thread

1

finished

executing

all

the

chunks

in

its

partition

and

then

grabbed

an

available

chunk

from

the

partition

of

thread

4.

Similarly,

thread

3

finished

executing

all

the

chunks

in

its

partition

and

then

grabbed

an

available

chunk

from

the

partition

of

thread

2.

Example

3.

Given

the

following

information:

number

of

iterations

=

1000

number

of

threads

=

4

and

using

the

DYNAMIC

scheduling

type

and

chunk

size

of

100,

the

chunk

sizes

would

be

as

follows:

100

100

100

100

100

100

100

100

100

100

The

iterations

would

be

divided

into

the

following

chunks:

PARALLEL

DO

/

END

PARALLEL

DO

44

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

chunk

1

=

iterations

1

to

100

chunk

2

=

iterations

101

to

200

chunk

3

=

iterations

201

to

300

chunk

4

=

iterations

301

to

400

chunk

5

=

iterations

401

to

500

chunk

6

=

iterations

501

to

600

chunk

7

=

iterations

601

to

700

chunk

8

=

iterations

701

to

800

chunk

9

=

iterations

801

to

900

chunk

10

=

iterations

901

to

1000

A

possible

scenario

for

the

division

of

work

could

be:

thread

1

executes

chunks

1

5

9

thread

2

executes

chunks

2

8

thread

3

executes

chunks

3

6

10

thread

4

executes

chunks

4

7

Example

4.

Given

the

following

information:

number

of

iterations

=

100

number

of

threads

=

4

and

using

the

STATIC

scheduling

type,

the

iterations

would

be

divided

into

the

following

chunks:

chunk

1

=

iterations

1

to

25

chunk

2

=

iterations

26

to

50

chunk

3

=

iterations

51

to

75

chunk

4

=

iterations

76

to

100

A

possible

scenario

for

the

division

of

work

could

be:

thread

1

executes

chunks

1

thread

2

executes

chunks

2

thread

3

executes

chunks

3

thread

4

executes

chunks

4

SECTIONS

/

END

SECTIONS

The

SECTIONS

construct

defines

distinct

blocks

of

code

to

be

executed

in

parallel

by

threads

in

the

team.

The

SECTIONS

and

END

SECTIONS

directives

only

take

effect

if

you

specify

the

-qsmp

compiler

option.

PARALLEL

DO

/

END

PARALLEL

DO

SMP

Directives

45

Syntax

where

sections_clause

is:

firstprivate_clause

See

—

“FIRSTPRIVATE”

on

page

67.

lastprivate_clause

See

—

“LASTPRIVATE”

on

page

68.

private_clause

See

—

“PRIVATE”

on

page

70.

reduction_clause

See

—

“REDUCTION”

on

page

72

Rules

The

SECTIONS

construct

must

be

encountered

by

all

threads

in

a

team

or

by

none

of

the

threads

in

a

team.

All

work-sharing

constructs

and

BARRIER

directives

that

are

encountered

must

be

encountered

in

the

same

order

by

all

threads

in

the

team.

The

SECTIONS

construct

includes

the

delimiting

directives,

and

the

blocks

of

code

they

enclose.

At

least

one

block

of

code

must

appear

in

the

construct.

You

must

specify

the

SECTION

directive

at

the

beginning

of

each

block

of

code

except

for

the

first.

The

end

of

a

block

is

delimited

by

either

another

SECTION

directive

or

by

the

END

SECTIONS

directive.

It

is

illegal

to

branch

into

or

out

of

any

block

of

code

that

is

enclosed

in

the

SECTIONS

construct.

All

SECTION

directives

must

appear

within

the

lexical

extent

of

the

SECTIONS/END

SECTIONS

directive

pair.

The

compiler

determines

how

to

divide

the

work

among

the

threads

based

on

a

number

of

factors,

such

as

the

number

of

threads

in

the

team

and

the

number

of

��

�

SECTIONS

sections_clause

,

��

��

�

block

SECTION

SECTION

block

��

��

END

SECTIONS

NOWAIT

��

��

firstprivate_clause

lastprivate_clause

private_clause

reduction_clause

��

PARALLEL

DO

/

END

PARALLEL

DO

46

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

sections

to

be

executed

in

parallel.

Therefore,

a

single

thread

might

execute

more

than

one

SECTION.

It

is

also

possible

that

a

thread

in

the

team

might

not

execute

any

SECTION.

In

order

for

the

directive

to

execute

in

parallel,

you

must

place

the

SECTIONS/END

SECTIONS

pair

within

the

dynamic

extent

of

a

parallel

region.

Otherwise,

the

blocks

will

be

executed

serially.

If

you

specify

NOWAIT

on

the

SECTIONS

directive,

a

thread

that

completes

its

sections

early

will

proceed

to

the

instructions

following

the

SECTIONS

construct.

If

you

do

not

specify

the

NOWAIT

clause,

each

thread

will

wait

for

all

of

the

other

threads

in

the

same

team

to

reach

the

END

SECTIONS

directive.

However,

there

is

no

implied

BARRIER

at

the

start

of

the

SECTIONS

construct.

You

cannot

specify

a

SECTIONS

directive

within

the

dynamic

extent

of

a

CRITICAL

or

MASTER

directive.

You

cannot

nest

SECTIONS,

DO

or

SINGLE

directives

that

bind

to

the

same

PARALLEL

directive.

BARRIER

and

MASTER

directives

are

not

permitted

in

the

dynamic

extent

of

a

SECTIONS

directive.

The

END

SECTIONS

directive

implies

the

FLUSH

directive.

Examples

Example

1:

This

example

shows

a

valid

use

of

the

SECTIONS

construct

within

a

PARALLEL

region.

INTEGER

::

I,

B(500),

S,

SUM

!

...

S

=

0

SUM

=

0

!$OMP

PARALLEL

SHARED(SUM),

FIRSTPRIVATE(S)

!$OMP

SECTIONS

REDUCTION(+:

SUM),

LASTPRIVATE(I)

!$OMP

SECTION

S

=

FCT1(B(1::2))

!

Array

B

is

not

altered

in

FCT1.

SUM

=

SUM

+

S

!

...

!$OMP

SECTION

S

=

FCT2(B(2::2))

!

Array

B

is

not

altered

in

FCT2.

SUM

=

SUM

+

S

!

...

!$OMP

SECTION

DO

I

=

1,

500

!

The

local

copy

of

S

is

initialized

S

=

S

+

B(I)

!

to

zero.

END

DO

SUM

=

SUM

+

S

!

...

!$OMP

END

SECTIONS

!

...

!$OMP

DO

REDUCTION(-:

SUM)

DO

J=I-1,

1,

-1

!

The

loop

starts

at

500

--

the

last

!

value

from

the

previous

loop.

SUM

=

SUM

-

B(J)

END

DO

!$OMP

MASTER

SUM

=

SUM

-

FCT1(B(1::2))

-

FCT2(B(2::2))

!$OMP

END

MASTER

!$OMP

END

PARALLEL

PARALLEL

DO

/

END

PARALLEL

DO

SMP

Directives

47

!

...

!

Upon

termination

of

the

PARALLEL

!

region,

the

value

of

SUM

remains

zero.

Example

2:

This

example

shows

a

valid

use

of

nested

SECTIONS.

!$OMP

PARALLEL

!$OMP

MASTER

CALL

RANDOM_NUMBER(CX)

CALL

RANDOM_NUMBER(CY)

CALL

RANDOM_NUMBER(CZ)

!$OMP

END

MASTER

!$OMP

SECTIONS

!$OMP

SECTION

!$OMP

PARALLEL

!$OMP

SECTIONS

PRIVATE(I)

!$OMP

SECTION

DO

I=1,

5000

X(I)

=

X(I)

+

CX

END

DO

!$OMP

SECTION

DO

I=1,

5000

Y(I)

=

Y(I)

+

CY

END

DO

!$OMP

END

SECTIONS

!$OMP

END

PARALLEL

!$OMP

SECTION

!$OMP

PARALLEL

SHARED(CZ,Z)

!$OMP

DO

DO

I=1,

5000

Z(I)

=

Z(I)

+

CZ

END

DO

!$OMP

END

DO

!$OMP

END

PARALLEL

!$OMP

END

SECTIONS

NOWAIT

!

The

following

computations

do

not

!

depend

on

the

results

from

the

!

previous

section.

!$OMP

DO

DO

I=1,

5000

T(I)

=

T(I)

*

CT

END

DO

!$OMP

END

DO

!$OMP

END

PARALLEL

Related

Information

v

“PARALLEL

/

END

PARALLEL”

on

page

33

v

“BARRIER”

on

page

21

v

“PARALLEL

DO

/

END

PARALLEL

DO”

on

page

35

v

“THREADPRIVATE”

on

page

54

v

-qsmp

option.

SINGLE

/

END

SINGLE

You

can

use

the

SINGLE

/

END

SINGLE

directive

construct

to

specify

that

the

enclosed

code

should

only

be

executed

by

one

thread

in

the

team.

The

SINGLE

directive

only

takes

effect

if

you

specify

the

–qsmp

compiler

option.

PARALLEL

DO

/

END

PARALLEL

DO

48

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

Syntax

where

single_clause

is:

private_clause

See

—

“PRIVATE”

on

page

70.

firstprivate_clause

See

—

“FIRSTPRIVATE”

on

page

67.

where

end_single_clause

is:

NOWAIT

copyprivate_clause

.

Rules

It

is

illegal

to

branch

into

or

out

of

a

block

that

is

enclosed

within

the

SINGLE

construct.

The

SINGLE

construct

must

be

encountered

by

all

threads

in

a

team

or

by

none

of

the

threads

in

a

team.

All

work-sharing

constructs

and

BARRIER

directives

that

are

encountered

must

be

encountered

in

the

same

order

by

all

threads

in

the

team.

If

you

specify

NOWAIT

on

the

END

SINGLE

directive,

the

threads

that

are

not

executing

the

SINGLE

construct

will

proceed

to

the

instructions

following

the

SINGLE

construct.

If

you

do

not

specify

the

NOWAIT

clause,

each

thread

will

wait

at

the

END

SINGLE

directive

until

the

thread

executing

the

construct

reaches

the

END

SINGLE

directive.

You

may

not

specify

NOWAIT

and

COPYPRIVATE

as

part

of

the

same

END

SINGLE

directive.

��

�

SINGLE

single_clause

,

��

��

block

��

��

END

SINGLE

NOWAIT

end_single_clause

��

��

private_clause

firstprivate_clause

��

��

�

copyprivate_clause

,

��

PARALLEL

DO

/

END

PARALLEL

DO

SMP

Directives

49

There

is

no

implied

BARRIER

at

the

start

of

the

SINGLE

construct.

If

you

do

not

specify

the

NOWAIT

clause,

the

BARRIER

directive

is

implied

at

the

END

SINGLE

directive.

You

cannot

nest

SECTIONS,

DO

and

SINGLE

directives

inside

one

another

if

they

bind

to

the

same

PARALLEL

directive.

SINGLE

directives

are

not

permitted

within

the

dynamic

extent

of

CRITICAL

and

MASTER

directives.

BARRIER

and

MASTER

directives

are

not

permitted

within

the

dynamic

extent

of

SINGLE

directives.

If

you

have

specified

a

variable

as

PRIVATE,

FIRSTPRIVATE,

LASTPRIVATE

or

REDUCTION

in

the

PARALLEL

construct

which

encloses

your

SINGLE

construct,

you

cannot

specify

the

same

variable

in

the

PRIVATE

or

FIRSTPRIVATE

clause

of

the

SINGLE

construct.

The

SINGLE

directive

binds

to

the

closest

dynamically

enclosing

PARALLEL

directive,

if

one

exists.

Examples

Example

1:

In

this

example,

the

BARRIER

directive

is

used

to

ensure

that

all

threads

finish

their

work

before

entering

the

SINGLE

construct.

REAL

::

X(100),

Y(50)

!

...

!$OMP

PARALLEL

DEFAULT(SHARED)

CALL

WORK(X)

!$OMP

BARRIER

!$OMP

SINGLE

CALL

OUTPUT(X)

CALL

INPUT(Y)

!$OMP

END

SINGLE

CALL

WORK(Y)

!$OMP

END

PARALLEL

Example

2:

In

this

example,

the

SINGLE

construct

ensures

that

only

one

thread

is

executing

a

block

of

code.

In

this

case,

array

B

is

initialized

in

the

DO

(work-sharing)

construct.

After

the

initialization,

a

single

thread

is

employed

to

perform

the

summation.

INTEGER

::

I,

J

REAL

::

B(500,500),

SM

!

...

J

=

...

SM

=

0.0

!$OMP

PARALLEL

!$OMP

DO

PRIVATE(I)

DO

I=1,

500

CALL

INITARR(B(I,:),

I)

!

initialize

the

array

B

ENDDO

!$OMP

END

DO

!$OMP

SINGLE

!

employ

only

one

thread

DO

I=1,

500

SM

=

SM

+

SUM(B(J:J+1,I))

ENDDO

!$OMP

END

SINGLE

!$OMP

DO

PRIVATE(I)

PARALLEL

DO

/

END

PARALLEL

DO

50

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

DO

I=500,

1,

-1

CALL

INITARR(B(I,:),

501-I)

!

re-initialize

the

array

B

ENDDO

!$OMP

END

PARALLEL

Example

3:

This

example

shows

a

valid

use

of

the

PRIVATE

clause.

Array

X

is

PRIVATE

to

the

SINGLE

construct.

If

you

were

to

reference

array

X

immediately

following

the

construct,

it

would

be

undefined.

REAL

::

X(2000),

A(1000),

B(1000)

!$OMP

PARALLEL

!

...

!$OMP

SINGLE

PRIVATE(X)

CALL

READ_IN_DATA(X)

A

=

X(1::2)

B

=

X(2::2)

!$OMP

END

SINGLE

!

...

!$OMP

END

PARALLEL

Example

4:

In

this

example,

the

LASTPRIVATE

variable

I

is

used

in

allocating

TMP,

the

PRIVATE

variable

in

the

SINGLE

construct.

SUBROUTINE

ADD(A,

UPPERBOUND)

INTEGER

::

A(UPPERBOUND),

I,

UPPERBOUND

INTEGER,

ALLOCATABLE

::

TMP(:)

!

...

!$OMP

PARALLEL

!$OMP

DO

LASTPRIVATE(I)

DO

I=1,

UPPERBOUND

A(I)

=

I

+

1

ENDDO

!$OMP

END

DO

!$OMP

SINGLE

FIRSTPRIVATE(I),

PRIVATE(TMP)

ALLOCATE(TMP(0:I-1))

TMP

=

(/

(A(J),J=I,1,-1)

/)

!

...

DEALLOCATE(TMP)

!$OMP

END

SINGLE

!$OMP

END

PARALLEL

!

...

END

SUBROUTINE

ADD

Example

5:

In

this

example,

a

value

for

the

variable

I

is

entered

by

the

user.

This

value

is

then

copied

into

the

corresponding

variable

I

for

all

other

threads

in

the

team

using

a

COPYPRIVATE

clause

on

an

END

SINGLE

directive.

INTEGER

I

!$OMP

PARALLEL

PRIVATE

(I)

!

...

!$OMP

SINGLE

READ

(*,

*)

I

!$OMP

END

SINGLE

COPYPRIVATE

(I)

!

In

all

threads

in

the

team,

I

!

is

equal

to

the

value

!

...

!

that

you

entered.

!$OMP

END

PARALLEL

Example

6:

In

this

example,

variable

J

with

a

POINTER

attribute

is

specified

in

a

COPYPRIVATE

clause

on

an

END

SINGLE

directive.

The

value

of

J,

not

the

value

of

the

object

that

it

points

to,

is

copied

into

the

corresponding

variable

J

for

all

other

threads

in

the

team.

The

object

itself

is

shared

among

all

the

threads

in

the

team.

PARALLEL

DO

/

END

PARALLEL

DO

SMP

Directives

51

INTEGER,

POINTER

::

J

!$OMP

PARALLEL

PRIVATE

(J)

!

...

!$OMP

SINGLE

ALLOCATE

(J)

READ

(*,

*)

J

!$OMP

END

SINGLE

COPYPRIVATE

(J)

!$OMP

ATOMIC

J

=

J

+

OMP_GET_THREAD_NUM()

!$OMP

BARRIER

!$OMP

SINGLE

WRITE

(*,

*)

’J

=

’,

J

!

The

result

is

the

sum

of

all

values

added

to

!

J.

This

result

shows

that

the

pointer

object

!

is

shared

by

all

threads

in

the

team.

DEALLOCATE

(J)

!$OMP

END

SINGLE

!$OMP

END

PARALLEL

Related

Information

v

“BARRIER”

on

page

21

v

“CRITICAL

/

END

CRITICAL”

on

page

22

v

“FLUSH”

on

page

27

v

“MASTER

/

END

MASTER”

on

page

29

v

“PARALLEL

/

END

PARALLEL”

on

page

33

THREADLOCAL

You

can

use

the

THREADLOCAL

directive

to

declare

thread-specific

common

data.

It

is

a

possible

method

of

ensuring

that

access

to

data

that

is

contained

within

COMMON

blocks

is

serialized.

In

order

to

make

use

of

this

directive

it

is

not

necessary

to

specify

-qsmp

compiler

option.,

but

the

invocation

command

must

be

xlf_r,

xlf90_r,

or

xlf95_r

to

link

the

necessary

libraries.

Syntax

Rules

You

can

only

declare

named

blocks

as

THREADLOCAL.

All

rules

and

constraints

that

normally

apply

to

named

common

blocks

apply

to

common

blocks

that

are

declared

as

THREADLOCAL.

The

THREADLOCAL

directive

must

appear

in

the

specification_part

of

the

scoping

unit.

If

a

common

block

appears

in

a

THREADLOCAL

directive,

it

must

also

be

declared

within

a

COMMON

statement

in

the

same

scoping

unit.

The

THREADLOCAL

directive

may

occur

before

or

after

the

COMMON

statement.

A

common

block

cannot

be

given

the

THREADLOCAL

attribute

if

it

is

declared

within

a

PURE

subprogram.

Members

of

a

THREADLOCAL

common

block

must

not

appear

in

NAMELIST

statements.

��

�

,

THREADLOCAL

/

common_block_name

/

::

��

PARALLEL

DO

/

END

PARALLEL

DO

52

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

A

common

block

that

is

use-associated

must

not

be

declared

as

THREADLOCAL

in

the

scoping

unit

that

contains

the

USE

statement.

Any

pointers

declared

in

a

THREADLOCAL

common

block

are

not

affected

by

the

-qinit=f90ptr

compiler

option.

Objects

within

THREADLOCAL

common

blocks

may

be

used

in

parallel

loops

and

parallel

sections.

However,

these

objects

are

implicitly

shared

across

the

iterations

of

the

loop,

and

across

code

blocks

within

parallel

sections.

In

other

words,

within

a

scoping

unit,

all

accessible

common

blocks,

whether

declared

as

THREADLOCAL

or

not,

have

the

SHARED

attribute

within

parallel

loops

and

sections

in

that

scoping

unit.

If

a

common

block

is

declared

as

THREADLOCAL

within

a

scoping

unit,

any

subprogram

that

declares

or

references

the

common

block,

and

that

is

directly

or

indirectly

referenced

by

the

scoping

unit,

must

be

executed

by

the

same

thread

executing

the

scoping

unit.

If

two

procedures

that

declare

common

blocks

are

executed

by

different

threads,

then

they

would

obtain

different

copies

of

the

common

block,

provided

that

the

common

block

had

been

declared

THREADLOCAL.

Threads

can

be

created

in

one

of

the

following

ways:

v

Explicitly,

via

pthreads

library

calls

v

Implicitly

by

the

compiler

for

parallel

loop

execution

v

Implicitly

by

the

compiler

for

parallel

section

execution.

If

a

common

block

is

declared

to

be

THREADLOCAL

in

one

scoping

unit,

it

must

be

declared

to

be

THREADLOCAL

in

every

scoping

unit

that

declares

the

common

block.

If

a

THREADLOCAL

common

block

that

does

not

have

the

SAVE

attribute

is

declared

within

a

subprogram,

the

members

of

the

block

become

undefined

at

subprogram

RETURN

or

END,

unless

there

is

at

least

one

other

scoping

unit

in

which

the

common

block

is

accessible

that

is

making

a

direct

or

indirect

reference

to

the

subprogram.

You

cannot

specify

the

same

common_block_name

for

both

a

THREADLOCAL

directive

and

a

THREADPRIVATE

directive.

Example

1:

The

following

procedure

″FORT_SUB″

is

invoked

by

two

threads:

SUBROUTINE

FORT_SUB(IARG)

INTEGER

IARG

CALL

LIBRARY_ROUTINE1()

CALL

LIBRARY_ROUTINE2()

...

END

SUBROUTINE

FORT_SUB

SUBROUTINE

LIBRARY_ROUTINE1()

COMMON

/BLOCK/

R

!

The

SAVE

attribute

is

required

for

the

SAVE

/BLOCK/

!

common

block

because

the

program

requires

!

that

the

block

remain

defined

after

!IBM*

THREADLOCAL

/BLOCK/

!

library_routine1

is

invoked.

R

=

1.0

...

END

SUBROUTINE

LIBRARY_ROUTINE1

SUBROUTINE

LIBRARY_ROUTINE2()

COMMON

/BLOCK/

R

SAVE

/BLOCK/

!IBM*

THREADLOCAL

/BLOCK/

THREADLOCAL

SMP

Directives

53

...

=

R

...

END

SUBROUTINE

LIBRARY_ROUTINE2

Example

2:

″FORT_SUB″

is

invoked

by

multiple

threads.

This

is

an

invalid

example

because

″FORT_SUB″

and

″ANOTHER_SUB″

both

declare

/BLOCK/

to

be

THREADLOCAL.

They

intend

to

share

the

common

block,

but

they

are

executed

by

different

threads.

SUBROUTINE

FORT_SUB()

COMMON

/BLOCK/

J

INTEGER

::

J

!IBM*

THREADLOCAL

/BLOCK/

!

Each

thread

executing

FORT_SUB

!

obtains

its

own

copy

of

/BLOCK/

INTEGER

A(10)

...

!IBM*

INDEPENDENT

DO

INDEX

=

1,10

CALL

ANOTHER_SUB(A(I))

END

DO

...

END

SUBROUTINE

FORT_SUB

SUBROUTINE

ANOTHER_SUB(AA)

!

Multiple

threads

are

used

to

execute

ANOTHER_SUB

INTEGER

AA

COMMON

/BLOCK/

J

!

Each

thread

obtains

a

new

copy

of

the

INTEGER

::

J

!

common

block

/BLOCK/

!IBM*

THREADLOCAL

/BLOCK/

...

AA

=

J

!

The

value

of

’J’

is

undefined.

END

SUBROUTINE

ANOTHER_SUB

THREADPRIVATE

The

THREADPRIVATE

directive

allows

you

to

specify

named

common

blocks

and

named

variables

as

private

to

a

thread

but

global

within

that

thread.

Once

you

declare

a

common

block

or

variable

THREADPRIVATE,

each

thread

in

the

team

maintains

a

separate

copy

of

that

common

block

or

variable.

Data

written

to

a

THREADPRIVATE

common

block

or

variable

remains

private

to

that

thread

and

is

not

visible

to

other

threads

in

the

team.

In

the

serial

and

MASTER

sections

of

a

program,

only

the

master

thread’s

copy

of

the

named

common

block

and

variable

is

accessible.

Use

the

COPYIN

clause

on

the

PARALLEL,

PARALLEL

DO,

PARALLEL

SECTIONS

or

PARALLEL

WORKSHARE

directives

to

specify

that

upon

entry

into

a

parallel

region,

data

in

the

master

thread’s

copy

of

a

named

common

block

or

named

variable

is

copied

to

each

thread’s

private

copy

of

that

common

block

or

variable.

The

THREADPRIVATE

directive

only

takes

effect

if

you

specify

the

-qsmp

compiler

option.

Syntax

THREADLOCAL

54

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

common_block_name

is

the

name

of

a

common

block

to

be

made

private

to

a

thread.

variable_name

is

the

name

of

a

variable

to

be

made

private

to

a

thread.

Rules

You

cannot

specify

a

THREADPRIVATE

variable,

common

block,

or

the

variables

that

comprise

that

common

block

in

a

PRIVATE,

FIRSTPRIVATE,

LASTPRIVATE,

SHARED,

or

REDUCTION

clause.

A

THREADPRIVATE

variable

must

have

the

SAVE

attribute.

For

variables

or

common

blocks

declared

in

the

scope

of

a

module,

the

SAVE

attribute

is

implied.

If

you

declare

the

variable

outside

of

the

scope

of

the

module,

the

SAVE

attribute

must

be

specified.

In

THREADPRIVATE

directives,

you

can

only

specify

named

variables

and

named

common

blocks.

A

variable

can

only

appear

in

a

THREADPRIVATE

directive

in

the

scope

in

which

it

is

declared,

and

a

THREADPRIVATE

variable

or

common

block

may

only

appear

once

in

a

given

scope.

The

variable

must

not

be

an

element

of

a

common

block,

or

be

declared

in

an

EQUIVALENCE

statement.

You

cannot

specify

the

same

common_block_name

for

both

a

THREADPRIVATE

directive

and

a

THREADLOCAL

directive.

All

rules

and

constraints

that

apply

to

named

common

blocks

also

apply

to

common

blocks

declared

as

THREADPRIVATE.

If

you

declare

a

common

block

as

THREADPRIVATE

in

one

scoping

unit,

you

must

declare

it

as

THREADPRIVATE

in

all

other

scoping

units

in

which

it

is

declared.

On

entry

into

any

parallel

region,

a

THREADPRIVATE

variable,

or

a

variable

in

a

THREADPRIVATE

common

block

is

subject

to

the

following

criteria

when

declared

in

a

COPYIN

clause:

v

If

the

variable

has

the

POINTER

attribute

and

the

master

thread’s

copy

of

the

variable

is

associated

with

a

target,

then

each

copy

of

that

variable

is

associated

with

the

same

target.

If

the

master

thread’s

pointer

is

disassociated,

then

each

copy

of

that

variable

is

disassociated.

If

the

master

thread’s

copy

of

the

variable

has

an

undefined

association

status,

then

each

copy

of

that

variable

has

an

undefined

association

status.

v

Each

copy

of

a

variable

without

the

POINTER

attribute

is

assigned

the

same

value

as

the

master

thread’s

copy

of

that

variable.

��

THREADPRIVATE

(

threadprivate_entity_list

)

��

where

threadprivate_entity_list

is:

��

variable_name

/

common_block_name

/

��

THREADLOCAL

SMP

Directives

55

On

entry

into

the

first

parallel

region

of

the

program,

THREADPRIVATE

variables

or

variables

within

a

THREADPRIVATE

common

block

not

specified

in

a

COPYIN

clause

are

subject

to

the

following

criteria:

v

If

the

variable

has

the

ALLOCATABLE

attribute,

the

initial

allocation

status

of

each

copy

of

that

variable

is

not

currently

allocated.

v

If

the

variable

has

the

POINTER

attribute,

and

that

pointer

is

disassociated

through

either

explicit

or

default

initialization,

the

association

status

of

each

copy

of

that

variable

is

disassociated.

Otherwise,

the

association

status

of

the

pointer

is

undefined.

v

If

the

variable

has

neither

the

ALLOCATABLE

nor

the

POINTER

attribute

and

is

defined

through

either

explicit

or

default

initialization,

then

each

copy

of

that

variable

is

defined.

If

the

variable

is

undefined,

then

each

copy

of

that

variable

is

undefined.

On

entry

into

subsequent

parallel

regions

of

the

program,

THREADPRIVATE

variables,

or

variables

within

a

THREADPRIVATE

common

block

not

specified

in

a

COPYIN

clause,

are

subject

to

the

following

criteria:

v

If

you

are

using

the

OMP_DYNAMIC

environment

variable,

or

the

omp_set_dynamic

subroutine

to

enable

dynamic

threads,

the

definition

and

association

status

of

a

thread’s

copy

of

that

variable

is

undefined,

and

the

allocation

status

is

undefined.

v

If

dynamic

threads

are

disabled,

the

definition,

association,

or

allocation

status

and

definition,

if

the

thread’s

copy

of

the

variable

was

defined,

is

retained.

You

cannot

access

the

name

of

a

common

block

by

use

association

or

host

association.

Thus,

a

named

common

block

can

only

appear

on

a

THREADPRIVATE

directive

if

the

common

block

is

declared

in

the

scoping

unit

that

contains

the

THREADPRIVATE

directive.

However,

you

can

access

the

variables

in

the

common

block

by

use

association

or

host

association.

The

-qinit=f90ptr

compiler

option

does

not

affect

pointers

that

you

have

declared

in

a

THREADPRIVATE

common

block.

The

DEFAULT

clause

does

not

affect

variables

in

THREADPRIVATE

common

blocks.

Examples

Example

1:

In

this

example,

the

PARALLEL

DO

directive

invokes

multiple

threads

that

call

SUB1.

The

common

block

BLK

in

SUB1

shares

the

data

that

is

specific

to

the

thread

with

subroutine

SUB2,

which

is

called

by

SUB1.

PROGRAM

TT

INTEGER

::

I,

B(50)

!$OMP

PARALLEL

DO

SCHEDULE(STATIC,

10)

DO

I=1,

50

CALL

SUB1(I,

B(I))

!

Multiple

threads

call

SUB1.

ENDDO

END

PROGRAM

TT

SUBROUTINE

SUB1(J,

X)

INTEGER

::

J,

X,

A(100)

COMMON

/BLK/

A

!$OMP

THREADPRIVATE(/BLK/)

!

Array

a

is

private

to

each

thread.

!

...

CALL

SUB2(J)

X

=

A(J)

+

A(J

+

50)

!

...

END

SUBROUTINE

SUB1

THREADLOCAL

56

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

SUBROUTINE

SUB2(K)

INTEGER

::

C(100)

COMMON

/BLK/

C

!$OMP

THREADPRIVATE(/BLK/)

!

...

C

=

K

!

...

!

Since

each

thread

has

its

own

copy

of

!

common

block

BLK,

the

assignment

of

!

array

C

has

no

effect

on

the

copies

of

!

that

block

owned

by

other

threads.

END

SUBROUTINE

SUB2

Example

2:

In

this

example,

each

thread

has

its

own

copy

of

the

common

block

ARR

in

the

parallel

section.

If

one

thread

initializes

the

common

block

variable

TEMP,

the

initial

value

is

not

visible

to

other

threads.

PROGRAM

ABC

INTEGER

::

I,

TEMP(100),

ARR1(50),

ARR2(50)

COMMON

/ARR/

TEMP

!$OMP

THREADPRIVATE(/ARR/)

INTERFACE

SUBROUTINE

SUBS(X)

INTEGER

::

X(:)

END

SUBROUTINE

END

INTERFACE

!

...

!$OMP

PARALLEL

SECTIONS

!$OMP

SECTION

!

The

thread

has

its

own

copy

of

the

!

...

!

common

block

ARR.

TEMP(1:100:2)

=

-1

TEMP(2:100:2)

=

2

CALL

SUBS(ARR1)

!

...

!$OMP

SECTION

!

The

thread

has

its

own

copy

of

the

!

...

!

common

block

ARR.

TEMP(1:100:2)

=

1

TEMP(2:100:2)

=

-2

CALL

SUBS(ARR2)

!

...

!$OMP

END

PARALLEL

SECTIONS

!

...

PRINT

*,

SUM(ARR1),

SUM(ARR2)

END

PROGRAM

ABC

SUBROUTINE

SUBS(X)

INTEGER

::

K,

X(:),

TEMP(100)

COMMON

/ARR/

TEMP

!$OMP

THREADPRIVATE(/ARR/)

!

...

DO

K

=

1,

UBOUND(X,

1)

X(K)

=

TEMP(K)

+

TEMP(K

+

1)

!

The

thread

is

accessing

its

!

own

copy

of

!

the

common

block.

ENDDO

!

...

END

SUBROUTINE

SUBS

The

expected

output

for

this

program

is:

50

-50

Example

3:

In

the

following

example,

local

variables

outside

of

a

common

block

are

declared

THREADPRIVATE.

THREADLOCAL

SMP

Directives

57

MODULE

MDL

INTEGER

::

A(2)

INTEGER,

POINTER

::

P

INTEGER,

TARGET

::

T

!$OMP

THREADPRIVATE(A,

P)

END

MODULE

MDL

PROGRAM

MVAR

USE

MDL

INTEGER

::

I

INTEGER

OMP_GET_THREAD_NUM

CALL

OMP_SET_NUM_THREADS(2)

A

=

(/1,

2/)

T

=

4

P

=>

T

!$OMP

PARALLEL

PRIVATE(I)

COPYIN(A,

P)

I

=

OMP_GET_THREAD_NUM()

IF

(I

.EQ.

0)

THEN

A(1)

=

100

T

=

5

ELSE

IF

(I

.EQ.

1)

THEN

A(2)

=

200

END

IF

!$OMP

END

PARALLEL

!$OMP

PARALLEL

PRIVATE(I)

I

=

OMP_GET_THREAD_NUM()

IF

(I

.EQ.

0)

THEN

PRINT

*,

’A(2)

=

’,

A(2)

ELSE

IF

(I

.EQ.

1)

THEN

PRINT

*,

’A(1)

=

’,

A(1)

PRINT

*,

’P

=>

’,

P

END

IF

!$OMP

END

PARALLEL

END

PROGRAM

MVAR

If

dynamic

threads

mechanism

is

disabled,

the

expected

output

is:

A(2)

=

2

A(1)

=

1

P

=>

5

or

A(1)

=

1

P

=>

5

A(2)

=

2

Related

Information

v

OMP_DYNAMIC

environment

variable.

v

“omp_set_dynamic”

on

page

86

v

“PARALLEL

/

END

PARALLEL”

on

page

33

v

“PARALLEL

DO

/

END

PARALLEL

DO”

on

page

35

v

“PARALLEL

SECTIONS

/

END

PARALLEL

SECTIONS”

on

page

38

WORKSHARE

The

WORKSHARE

directive

allows

you

to

parallelize

the

execution

of

array

operations.

A

WORKSHARE

directive

divides

the

tasks

associated

with

an

THREADLOCAL

58

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

enclosed

block

of

code

into

units

of

work.

When

a

team

of

threads

encounters

a

WORKSHARE

directive,

the

threads

in

the

team

share

the

tasks,

so

that

each

unit

of

work

executes

exactly

once.

The

WORKSHARE

directive

only

takes

effect

if

you

specify

the

-qsmp

compiler

option.

Syntax

block

is

a

structured

block

of

statements

that

allows

work

sharing

within

the

lexical

extent

of

the

WORKSHARE

construct.

The

execution

of

statements

are

synchronized

so

that

statements

whose

result

is

a

dependent

on

another

statement

are

evaluated

before

that

result

is

required.

The

block

can

contain

any

of

the

following:

v

Array

assignment

statements

v

ATOMIC

directives

v

CRITICAL

constructs

v

FORALL

constructs

v

FORALL

statements

v

PARALLEL

construct

v

PARALLEL

DO

construct

v

PARALLEL

SECTION

construct

v

PARALLEL

WORKSHARE

construct

v

Scalar

assignment

statements

v

WHERE

constructs

v

WHERE

statements

The

transformational

intrinsic

functions

you

can

use

as

part

of

an

array

operation

are:

v

ALL

v

ANY

v

COUNT

v

CSHIFT

v

DOT_PRODUCT

v

EOSHIFT

v

MATMUL

v

MAXLOC

v

MAXVAL

v

MINLOC

v

MINVAL

v

PACK

v

PRODUCT

v

RESHAPE

v

SPREAD

v

SUM

v

TRANSPOSE

v

UNPACK

The

block

can

also

contain

statements

bound

to

lexically

enclosed

PARALLEL

constructs.

These

statements

are

not

restricted.

Any

user–defined

function

calls

within

the

block

must

be

elemental.

��

WORKSHARE

��

��

block

��

��

END

WORKSHARE

NOWAIT

��

THREADLOCAL

SMP

Directives

59

Statements

enclosed

in

a

WORKSHARE

directive

are

divided

into

units

of

work.

The

definition

of

a

unit

of

work

varies

according

to

the

statement

evaluated.

A

unit

of

work

is

defined

as

follows:

v

Array

expressions:

Evaluation

of

each

element

of

an

array

expression

is

a

unit

of

work.

Any

of

the

transformational

intrinsic

functions

listed

above

may

be

divided

into

any

number

of

units

of

work.

v

Assignment

statements:

In

an

array

assignment

statement,

the

assignment

of

each

element

in

the

array

is

a

unit

of

work.

For

scalar

assignment

statements,

the

assignment

operation

is

a

unit

of

work.

v

Constructs:

Evaluation

of

each

CRITICAL

construct

is

a

unit

of

work.

Each

PARALLEL

construct

contained

within

a

WORKSHARE

construct

is

a

single

unit

of

work.

New

teams

of

threads

execute

the

statements

contained

within

the

lexical

extent

of

the

enclosed

PARALLEL

constructs.

In

FORALL

constructs

or

statements,

the

evaluation

of

the

mask

expression,

expressions

occurring

in

the

specification

of

the

iteration

space,

and

the

masked

assignments

are

units

of

work.

In

WHERE

constructs

or

statements,

the

evaluation

of

the

mask

expression

and

the

masked

assignments

are

units

of

work.

v

Directives:

The

update

of

each

scalar

variable

for

an

ATOMIC

directive

and

its

assignments

is

a

unit

of

work.

v

ELEMENTAL

functions:

If

the

argument

to

an

ELEMENTAL

function

is

an

array,

then

the

application

of

the

function

to

each

element

of

an

array

is

a

unit

of

work.

If

none

of

the

above

definitions

apply

to

a

statement

within

the

block,

then

that

statement

is

a

unit

of

work.

Rules

In

order

to

ensure

that

the

statements

within

a

WORKSHARE

construct

execute

in

parallel,

the

construct

must

be

enclosed

within

the

dynamic

extent

of

a

parallel

region.

Threads

encountering

a

WORKSHARE

construct

outside

the

dynamic

extent

of

a

parallel

region

will

evaluate

the

statements

within

the

construct

serially.

A

WORKSHARE

directive

binds

to

the

closest

dynamically

enclosing

PARALLEL

directive

if

one

exists.

You

must

not

nest

DO,

SECTIONS,

SINGLE

and

WORKSHARE

directives

that

bind

to

the

same

PARALLEL

directive

You

must

not

specify

a

WORKSHARE

directive

within

the

dynamic

extent

of

CRITICAL,

MASTER,

or

ORDERED

directives.

You

must

not

specify

BARRIER,

MASTER,

or

ORDERED

directives

within

the

dynamic

extent

of

a

WORKSHARE

construct.

If

an

array

assignment,

scalar

assignment,

a

masked

array

assignment

or

a

FORALL

assignment

assigns

to

a

private

variable

in

the

block,

the

result

is

undefined.

If

an

array

expression

in

the

block

references

the

value,

association

status

or

allocation

status

of

private

variables,

the

value

of

the

expression

is

undefined

unless

each

thread

computes

the

same

value.

If

you

do

not

specify

a

NO

WAIT

clause

at

the

end

of

a

WORKSHARE

construct,

a

BARRIER

directive

is

implied.

THREADLOCAL

60

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

A

WORKSHARE

construct

must

be

encountered

by

all

threads

in

the

team

or

by

none

at

all.

Examples

Example

1:

In

the

following

example,

the

WORKSHARE

directive

evaluates

the

masked

expressions

in

parallel.

!$OMP

WORKSHARE

FORALL

(I

=

1

:

N,

AA(1,

I)

==

0)

AA(1,

I)

=

I

BB

=

TRANSPOSE(AA)

CC

=

MATMUL(AA,

BB)

!$OMP

ATOMIC

S

=

S

+

SUM(CC)

!$OMP

END

WORKSHARE

Example

2:

The

following

example

includes

a

user

defined

ELEMENTAL

as

part

of

a

WORKSHARE

construct.

!$OMP

WORKSHARE

WHERE

(AA(1,

:)

/=

0.0)

AA(1,

:)

=

1

/

AA(1,

:)

DD

=

TRANS(AA(1,

:))

!$OMP

END

WORKSHARE

ELEMENTAL

REAL

FUNCTION

TRANS(ELM)

RESULT(RES)

REAL,

INTENT(IN)

::

ELM

RES

=

ELM

*

ELM

+

4

END

FUNCTION

Related

Information

v

“ATOMIC”

on

page

18

v

“BARRIER”

on

page

21

v

“CRITICAL

/

END

CRITICAL”

on

page

22

v

“PARALLEL

WORKSHARE

/

END

PARALLEL

WORKSHARE”

on

page

41

v

-qsmp

compiler

option.

OpenMP

Directive

Clauses

The

following

OpenMP

directive

clauses

allow

you

to

specify

the

scope

attributes

of

variables

within

a

parallel

construct.

The

IF,

NUM_THREADS,

ORDERED,

and

SCHEDULE

clauses,

also

in

this

section,

allow

you

to

control

the

parallel

environment

of

a

parallel

region.

See

the

detailed

directive

descriptions

for

more

information.

COPYIN

COPYPRIVATE

DEFAULT

IF

FIRSTPRIVATE

LASTPRIVATE

NUM_THREADS

ORDERED

PRIVATE

REDUCTION

SCHEDULE

SHARED

Global

Rules

for

Directive

Clauses

You

must

not

specify

a

variable

or

common

block

name

more

than

once

in

a

clause.

A

variable,

common

block

name,

or

variable

name

that

is

a

member

of

a

common

block

must

not

appear

in

more

than

one

clause

on

the

same

directive,

with

the

following

exceptions:

v

You

can

define

a

named

common

block

or

named

variable

as

FIRSTPRIVATE

and

LASTPRIVATE

for

the

same

directive.

THREADLOCAL

SMP

Directives

61

v

A

variable

appearing

in

a

NUM_THREADS

clause

can

appear

in

another

clause

for

the

same

directive.

v

A

variable

appearing

in

a

IF

clause

can

appear

in

another

clause

for

the

same

directive.

If

you

do

not

specify

a

clause

that

changes

the

scope

of

a

variable,

the

default

scope

for

variables

affected

by

a

directive

is

SHARED.

A

local

variable

with

the

SAVE

or

STATIC

attribute

declared

in

a

procedure

referenced

within

the

dynamic

extent

of

a

parallel

region

has

an

implicit

SHARED

attribute.

A

local

variable

without

the

SAVE

or

STATIC

attribute

declared

in

a

procedure

referenced

within

the

dynamic

extent

of

a

parallel

region

has

an

implicit

PRIVATE

attribute.

Members

of

common

blocks

and

variables

of

modules

declared

in

procedure

referenced

within

the

dynamic

extent

of

a

parallel

region

have

an

implicit

SHARED

attribute,

unless

they

are

THREADLOCAL

or

THREADPRIVATE

common

blocks

and

module

variables.

While

a

parallel

or

work-sharing

construct

is

running,

a

variable

or

variable

subobject

used

in

a

PRIVATE,

FIRSTPRIVATE,

LASTPRIVATE

or

REDUCTION

clause

of

the

directive

must

not

be

referenced,

become

defined,

become

undefined,

have

its

association

status

or

allocation

status

changed,

or

appear

as

an

actual

argument:

v

In

a

scoping

unit

other

than

the

one

in

which

the

directive

construct

appears

v

In

a

variable

format

expression

You

can

declare

a

variable

as

PRIVATE,

FIRSTPRIVATE,

LASTPRIVATE,

or

REDUCTION,

even

if

that

variable

is

already

storage

associated

with

other

variables.

Storage

association

may

exist

for

variables

declared

in

EQUIVALENCE

statements

or

in

COMMON

blocks.

If

a

variable

is

storage

associated

with

a

PRIVATE,

FIRSTPRIVATE,

LASTPRIVATE,

or

REDUCTION

variable,

then:

v

The

contents,

allocation

status

and

association

status

of

the

variable

that

is

storage

associated

with

the

PRIVATE,

FIRSTPRIVATE,

LASTPRIVATE

or

REDUCTION

variable

are

undefined

on

entry

to

the

parallel

construct.

v

The

allocation

status,

association

status

and

the

contents

of

the

associated

variable

become

undefined

if

you

define

the

PRIVATE,

FIRSTPRIVATE,

LASTPRIVATE

or

REDUCTION

variable

or

if

you

define

that

variable’s

allocation

or

association

status.

v

The

allocation

status,

association

status

and

the

contents

of

the

PRIVATE,

FIRSTPRIVATE,

LASTPRIVATE

or

REDUCTION

variable

become

undefined

if

you

define

the

associated

variable

or

if

you

define

the

associated

variable’s

allocation

or

association

status.

Pointers

and

OpenMP

Fortran

API

Version

2.0

OpenMP

Fortran

API

Version

2.0

allows

a

variable

or

variable

subobject

of

a

PRIVATE

clause

can

have

the

POINTER

attribute.

The

association

status

of

the

pointer

is

undefined

at

thread

creation

and

when

the

thread

is

destroyed.

XL

Fortran

provides

an

extension

which

allows

a

variable

or

variable

subobject

of

a

FIRSTPRIVATE

or

LASTPRIVATE

clause

to

have

the

POINTER

attribute.

For

FIRSTPRIVATE

pointers

at

thread

creation,

each

copy

of

the

pointer

receives

the

same

association

status

as

the

original.

If

the

pointer

is

used

in

a

LASTPRIVATE

clause,

the

pointer

retains

its

association

status

at

the

end

of

the

last

iteration

or

SECTION.

OpenMP

Directive

Clauses

62

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

To

maintain

full

compliance

with

the

OpenMP

Fortran

API

Version

2.0

standard,

ensure

that

a

POINTER

variable

applies

only

to

a

PRIVATE

clause.

COPYIN

If

you

specify

the

COPYIN

clause,

the

master

thread’s

copy

of

each

variable,

or

common

block

declared

in

the

copyin_entity_list

is

duplicated

at

the

beginning

of

a

parallel

region.

Each

thread

in

the

team

that

will

execute

within

that

parallel

region

receives

a

private

copy

of

all

entities

in

the

copyin_entity_list.

All

variables

declared

in

the

copyin_entity_list

must

be

THREADPRIVATE

or

members

of

a

common

block

that

appears

in

a

THREADPRIVATE

directive.

Syntax

copyin_entity

variable

is

a

THREADPRIVATE

variable,

or

THREADPRIVATE

variable

in

a

common

block

common_block_name

is

a

THREADPRIVATE

common

block

name

Rules

If

you

specify

a

COPYIN

clause,

you

cannot:

v

specify

the

same

entity

name

more

than

once

in

a

copyin_entity_list.

v

specify

the

same

entity

name

in

separate

COPYIN

clauses

on

the

same

directive.

v

specify

both

a

common

block

name

and

any

variable

within

that

same

named

common

block

in

a

copyin_entity_list.

v

specify

both

a

common

block

name

and

any

variable

within

that

same

named

common

block

in

different

COPYIN

clauses

on

the

same

directive.

v

specify

a

variable

with

the

ALLOCATABLE

attribute.

When

the

master

thread

of

a

team

of

threads

reaches

a

directive

containing

the

COPYIN

clause,

thread’s

private

copy

of

a

variable

or

common

block

specified

in

the

COPYIN

clause

will

have

the

same

value

as

the

master

thread’s

copy.

The

COPYIN

clause

applies

to:

v

PARALLEL

v

PARALLEL

DO

v

PARALLEL

SECTIONS

v

PARALLEL

WORKSHARE

��

COPYIN

(

copyin_entity_list

)

��

��

variable_name

/

common_block_name

/

��

OpenMP

Directive

Clauses

SMP

Directives

63

COPYPRIVATE

If

you

specify

the

COPYPRIVATE

clause,

the

value

of

a

private

variable

or

pointer

to

a

shared

object

from

one

thread

in

a

team

is

copied

into

the

corresponding

variables

of

all

other

threads

in

that

team.

If

the

variable

in

copyprivate_entity_list

is

not

a

pointer,

then

the

corresponding

variables

of

all

threads

within

that

team

are

defined

with

the

value

of

that

variable.

If

the

variable

is

a

pointer,

then

the

corresponding

variables

of

all

threads

within

that

team

are

defined

with

the

association

status

of

the

pointer.

Integer

pointers

and

assumed-size

arrays

must

not

appear

in

copyprivate_entity_list.

Syntax

copyprivate_entity

variable

is

a

private

variable

within

the

enclosing

parallel

region

common_block_name

is

a

THREADPRIVATE

common

block

name

Rules

If

a

common

block

is

part

of

the

copyprivate_entity_list,

then

it

must

appear

in

a

THREADPRIVATE

directive.

Furthermore,

the

COPYPRIVATE

clause

treats

a

common

block

as

if

all

variables

within

its

object_list

were

specified

in

the

copyprivate_entity_list.

A

COPYPRIVATE

clause

must

occur

on

an

END

SINGLE

directive

at

the

end

of

a

SINGLE

construct.

The

compiler

evaluates

a

COPYPRIVATE

clause

before

any

threads

have

passed

the

implied

BARRIER

directive

at

the

end

of

that

construct.

The

variables

you

specify

in

copyprivate_entity_list

must

not

appear

in

a

PRIVATE

or

FIRSTPRIVATE

clause

for

the

SINGLE

construct.

If

the

END

SINGLE

directive

occurs

within

the

dynamic

extent

of

a

parallel

region,

the

variables

you

specify

in

copyprivate_entity_list

must

be

private

within

that

parallel

region.

A

COPYPRIVATE

clause

must

not

appear

on

the

same

END

SINGLE

directive

as

a

NOWAIT

clause.

A

THREADLOCAL

common

block,

or

members

of

that

common

block,

are

not

permitted

as

part

of

a

COPYPRIVATE

clause.

A

COPYPRIVATE

clause

applies

to

the

following

directives:

v

END

SINGLE

DEFAULT

If

you

specify

the

DEFAULT

clause,

all

variables

in

the

lexical

extent

of

the

parallel

construct

will

have

a

scope

attribute

of

default_scope_attr.

��

COPYPRIVATE

(

copyprivate_entity_list

)

��

��

variable

/

common_block_name

/

��

OpenMP

Directive

Clauses

64

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

If

you

specify

DEFAULT(NONE),

there

is

no

default

scope

attribute.

Therefore,

you

must

explicitly

list

each

variable

you

use

in

the

lexical

extent

of

the

parallel

construct

in

a

data

scope

attribute

clause

on

the

parallel

construct,

unless

the

variable

is:

v

THREADPRIVATE

v

A

member

of

a

THREADPRIVATE

common

block.

v

A

pointee

v

A

loop

iteration

variable

used

only

as

a

loop

iteration

variable

for:

–

Sequential

loops

in

the

lexical

extent

of

the

parallel

region,

or,

–

Parallel

do

loops

that

bind

to

the

parallel

region
v

A

variable

that

is

only

used

in

work-sharing

constructs

that

bind

to

the

parallel

region,

and

is

specified

in

a

data

scope

attribute

clause

for

each

of

the

work-sharing

constructs.

The

DEFAULT

clause

specifies

that

all

variables

in

the

parallel

construct

share

the

same

default

scope

attribute

of

either

PRIVATE,

SHARED,

or

no

default

scope

attribute.

Syntax

default_scope_attr

is

one

of

PRIVATE,

SHARED,

or

NONE

Rules

If

you

specify

DEFAULT(NONE)

on

a

directive

you

must

specify

all

named

variables

and

all

the

leftmost

names

of

referenced

array

sections,

array

elements,

structure

components,

or

substrings

in

the

lexical

extent

of

the

directive

construct

in

a

FIRSTPRIVATE,

LASTPRIVATE,

PRIVATE,

REDUCTION,

or

SHARED

clause.

If

you

specify

DEFAULT(PRIVATE)

on

a

directive,

all

named

variables

and

all

leftmost

names

of

referenced

array

sections,

array

elements,

structure

components,

or

substrings

in

the

lexical

extent

of

the

directive

construct,

including

common

block

and

use

associated

variables,

but

excluding

POINTEEs

and

THREADLOCAL

common

blocks,

have

a

PRIVATE

attribute

to

a

thread

as

if

they

were

listed

explicitly

in

a

PRIVATE

clause.

If

you

specify

DEFAULT(SHARED)

on

a

directive,

all

named

variables

and

all

leftmost

names

of

referenced

array

sections,

array

elements,

structure

components,

or

substrings

in

the

lexical

extent

of

the

directive

construct,

excluding

POINTEEs

have

a

SHARED

attribute

to

a

thread

as

if

they

were

listed

explicitly

in

a

SHARED

clause.

The

default

behavior

will

be

DEFAULT(SHARED)

if

you

do

not

explicitly

indicate

a

DEFAULT

clause

on

a

directive.

The

DEFAULT

clause

applies

to:

v

PARALLEL

��

DEFAULT

(

default_scope_attr

)

��

OpenMP

Directive

Clauses

SMP

Directives

65

v

PARALLEL

DO

v

PARALLEL

SECTIONS

v

PARALLEL

WORKSHARE

Examples

The

following

example

demonstrates

the

use

of

DEFAULT(NONE),

and

some

of

the

rules

for

specifying

the

data

scope

attributes

of

variables

in

the

parallel

region.

PROGRAM

MAIN

COMMON

/COMBLK/

ABC(10),

DEF

!

THE

LOOP

ITERATION

VARIABLE,

I,

IS

NOT

!

REQUIRED

TO

BE

IN

DATA

SCOPE

ATTRIBUTE

CLAUSE

!$OMP

PARALLEL

DEFAULT(NONE)

SHARED(ABC)

!

DEF

IS

SPECIFIED

ON

THE

WORK-SHARING

DO

AND

IS

NOT

!

REQUIRED

TO

BE

SPECIFIED

IN

A

DATA

SCOPE

ATTRIBUTE

!

CLAUSE

ON

THE

PARALLEL

REGION.

!$OMP

DO

FIRSTPRIVATE(DEF)

DO

I=1,10

ABC(I)

=

DEF

END

DO

!$OMP

END

PARALLEL

END

IF

If

you

specify

the

IF

clause,

the

run-time

environment

performs

a

test

to

determine

whether

to

run

the

block

in

serial

or

parallel.

If

scalar_logical_expression

is

true,

then

the

block

is

run

in

parallel;

if

not,

then

the

block

is

run

in

serial.

Syntax

Rules

Within

a

PARALLEL

SECTIONS

construct,

variables

that

are

not

appearing

in

the

PRIVATE

clause

are

assumed

to

be

SHARED

by

default.

The

IF

clause

may

appear

at

most

once

in

the

a

any

directive.

By

default,

a

nested

parallel

loop

is

serialized,

regardless

of

the

setting

of

the

IF

clause.

You

can

change

this

default

by

using

the

-qsmp=nested_par

compiler

option.

An

IF

expression

is

evaluated

outside

of

the

context

of

the

parallel

construct.

Any

function

reference

in

the

IF

expression

must

not

have

side

effects.

The

IF

clause

applies

to

the

following

directives:

v

“PARALLEL

/

END

PARALLEL”

on

page

33

v

“PARALLEL

DO

/

END

PARALLEL

DO”

on

page

35

v

“PARALLEL

SECTIONS

/

END

PARALLEL

SECTIONS”

on

page

38

v

“PARALLEL

WORKSHARE

/

END

PARALLEL

WORKSHARE”

on

page

41

��

IF

(

scalar_logical_expression

)

��

OpenMP

Directive

Clauses

66

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

FIRSTPRIVATE

If

you

use

the

FIRSTPRIVATE

clause,

each

thread

has

its

own

initialized

local

copy

of

the

variables

and

common

blocks

in

data_scope_entity_list.

The

FIRSTPRIVATE

clause

can

be

specified

for

the

same

variables

as

the

PRIVATE

clause,

and

functions

in

a

manner

similar

to

the

PRIVATE

clause.

The

exception

is

the

status

of

the

variable

upon

entry

into

the

directive

construct;

the

FIRSTPRIVATE

variable

exists

and

is

initialized

for

each

thread

entering

the

directive

construct.

Syntax

Rules

A

variable

in

a

FIRSTPRIVATE

clause

must

not

be

any

of

the

following

elements:

v

A

pointee

v

An

assumed-size

array

v

A

THREADLOCAL

common

block

v

A

THREADPRIVATE

common

block

or

its

members

v

A

THREADPRIVATE

variable

v

An

allocatable

object

You

cannot

specify

a

variable

in

a

FIRSTPRIVATE

clause

of

a

parallel

construct

if:

v

the

variable

appears

in

a

namelist

statement,

variable

format

expression

or

in

an

expression

for

a

statement

function

definition,

and,

v

you

reference

the

statement

function,

the

variable

format

expression

through

formatted

I/O,

or

the

namelist

through

namelist

I/O,

within

the

parallel

construct.

When

individual

members

of

a

common

block

are

privatized,

the

storage

of

the

specified

variable

is

no

longer

associated

with

the

storage

of

the

common

block.

Any

variable

that

is

storage

associated

with

a

FIRSTPRIVATE

variable

is

undefined

on

entrance

into

the

parallel

construct.

If

a

directive

construct

contains

a

FIRSTPRIVATE

argument

to

a

Message

Passing

Interface

(MPI)

routine

performing

non-blocking

communication,

the

MPI

communication

must

complete

before

the

end

of

the

construct.

The

FIRSTPRIVATE

clause

applies

to

the

following

directives:

v

DO

v

PARALLEL

v

PARALLEL

DO

v

PARALLEL

SECTIONS

v

PARALLEL

WORKSHARE

v

SECTIONS

v

SINGLE

��

FIRSTPRIVATE

(

data_scope_entity_list

)

��

OpenMP

Directive

Clauses

SMP

Directives

67

LASTPRIVATE

If

you

use

the

LASTPRIVATE

clause,

each

variable

and

common

block

in

data_scope_entity_list

is

PRIVATE,

and

the

last

value

of

each

variable

in

data_scope_entity_list

can

be

referred

to

outside

of

the

construct

of

the

directive.

If

you

use

the

LASTPRIVATE

clause

with

DO

or

PARALLEL

DO,

the

last

value

is

the

value

of

the

variable

after

the

last

sequential

iteration

of

the

loop.

If

you

use

the

LASTPRIVATE

clause

with

SECTIONS

or

PARALLEL

SECTIONS,

the

last

value

is

the

value

of

the

variable

after

the

last

SECTION

of

the

construct.

If

the

last

iteration

of

the

loop

or

last

section

of

the

construct

does

not

define

a

LASTPRIVATE

variable,

the

variable

is

undefined

after

the

loop

or

construct.

The

LASTPRIVATE

clause

functions

in

a

manner

similar

to

the

PRIVATE

clause

and

you

should

specify

it

for

variables

that

match

the

same

criteria.

The

exception

is

in

the

status

of

the

variable

on

exit

from

the

directive

construct.

The

compiler

determines

the

last

value

of

the

variable,

and

takes

a

copy

of

that

value

which

it

saves

in

the

named

variable

for

use

after

the

construct.

A

LASTPRIVATE

variable

is

undefined

on

entry

to

the

construct

if

it

is

not

a

FIRSTPRIVATE

variable.

Syntax

Rules

A

variable

in

a

LASTPRIVATE

clause

must

not

be

any

of

the

following

elements:

v

A

pointee

v

An

allocatable

object

v

An

assumed-size

array

v

A

THREADLOCAL

common

block

v

A

THREADPRIVATE

common

block

or

its

members

v

A

THREADPRIVATE

variable

You

cannot

specify

a

variable

in

a

LASTPRIVATE

clause

of

a

parallel

construct

if:

v

the

variable

appears

in

a

namelist

statement,

variable

format

expression

or

in

an

expression

for

a

statement

function

definition,

and,

v

you

reference

the

statement

function,

the

variable

format

expression

through

formatted

I/O,

or

the

namelist

through

namelist

I/O,

within

the

parallel

construct.

When

individual

members

of

a

common

block

are

privatized,

the

storage

of

the

specified

variable

is

no

longer

associated

with

the

storage

of

the

common

block.

Any

variable

that

is

storage

associated

with

a

LASTPRIVATE

variable

is

undefined

on

entrance

into

the

parallel

construct.

If

a

directive

construct

contains

a

LASTPRIVATE

argument

to

a

Message

Passing

Interface

(MPI)

routine

performing

non-blocking

communication,

the

MPI

communication

must

complete

before

the

end

of

that

construct.

If

you

specify

a

variable

as

LASTPRIVATE

on

a

work-sharing

directive,

and

you

have

specified

a

NOWAIT

clause

on

that

directive,

you

cannot

use

that

variable

between

the

end

of

the

work-sharing

construct

and

a

BARRIER.

��

LASTPRIVATE

(

data_scope_entity_list

)

��

LASTPRIVATE

68

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

Variables

that

you

specify

as

LASTPRIVATE

to

a

parallel

construct

become

defined

at

the

end

of

the

construct.

If

you

have

concurrent

definitions

or

uses

of

LASTPRIVATE

variables

on

multiple

threads,

you

must

ensure

that

the

threads

are

synchronized

at

the

end

of

the

construct

when

the

variables

become

defined.

For

example,

if

multiple

threads

encounter

a

PARALLEL

construct

with

a

LASTPRIVATE

variable,

you

must

synchronize

the

threads

when

they

reach

the

END

PARALLEL

directive,

because

the

LASTPRIVATE

variable

becomes

defined

at

END

PARALLEL.

Therefore

the

whole

PARALLEL

construct

must

be

enclosed

within

a

synchronization

construct.

The

LASTPRIVATE

clause

applies

to

the

following

directives:

v

DO

v

PARALLEL

DO

v

PARALLEL

SECTIONS

v

SECTIONS

Examples

The

following

example

shows

the

proper

use

of

a

LASTPRIVATE

variable

after

a

NOWAIT

clause.

!$OMP

PARALLEL

!$OMP

DO

LASTPRIVATE(K)

DO

I=1,10

K=I+1

END

DO

!$OMP

END

DO

NOWAIT

!

PRINT

*,

K

ERROR

!

The

reference

to

K

must

occur

after

a

!

barrier.

!$OMP

BARRIER

PRINT

*,

K

!

This

reference

to

K

is

legal.

!$OMP

END

PARALLEL

END

NUM_THREADS

The

NUM_THREADS

clause

allows

you

to

specify

the

number

of

threads

used

in

a

parallel

region.

Subsequent

parallel

regions

are

not

affected.

The

NUM_THREADS

clause

takes

precedence

over

the

number

of

threads

specified

using

the

omp_set_num_threads

library

routine

or

the

environment

variable

OMP_NUM_THREADS.

Syntax

Rules

The

value

of

scalar_integer_expression

must

be

a

positive.

Evaluation

of

the

expression

occurs

outside

the

context

of

the

parallel

region.

Any

function

calls

that

appear

in

the

expression

and

change

the

value

of

a

variable

referenced

in

the

expression

will

have

unspecified

results.

��

NUM_THREADS

(

scalar_integer_expression

)

��

LASTPRIVATE

SMP

Directives

69

If

you

are

using

the

environment

variable

OMP_DYNAMIC

to

enable

dynamic

threads,

scalar_integer_expression

defines

the

maximum

number

of

threads

available

in

the

parallel

region.

You

must

specify

the

omp_set_nested

library

routine

or

set

the

OMP_NESTED

environment

variable

when

including

the

NUM_THREADS

clause

as

part

of

a

nested

parallel

regions

otherwise,

the

execution

of

that

parallel

region

is

serialized.

The

NUM_THREADS

clause

applies

to

the

following

work–sharing

constructs:

v

PARALLEL

v

PARALLEL

DO

v

PARALLEL

SECTIONS

v

PARALLEL

WORKSHARE

ORDERED

Specifying

the

ORDERED

clause

on

a

work–sharing

construct

allows

you

to

specify

the

ORDERED

directive

within

the

dynamic

extent

of

a

parallel

loop.

Syntax

Rules

The

ORDERED

clause

applies

to

the

following

directives:

v

“DO

/

END

DO”

on

page

23

v

“PARALLEL

DO

/

END

PARALLEL

DO”

on

page

35

PRIVATE

If

you

specify

the

PRIVATE

clause

on

one

of

the

directives

listed

below,

each

thread

in

a

team

has

its

own

uninitialized

local

copy

of

the

variables

and

common

blocks

in

data_scope_entity_list.

You

should

specify

a

variable

with

the

PRIVATE

attribute

if

its

value

is

calculated

by

a

single

thread

and

that

value

is

not

dependent

on

any

other

thread,

if

it

is

defined

before

it

is

used

in

the

construct,

and

if

its

value

is

not

used

after

the

construct

ends.

Copies

of

the

PRIVATE

variable

exist,

locally,

on

each

thread.

Each

thread

receives

its

own

uninitialized

copy

of

the

PRIVATE

variable.

A

PRIVATE

variable

has

an

undefined

value

or

association

status

on

entry

to,

and

exit

from,

the

directive

construct.

All

thread

variables

within

the

lexical

extent

of

the

directive

construct

have

the

PRIVATE

attribute

by

default.

Syntax

Rules

A

variable

in

the

PRIVATE

clause

must

not

be

any

of

the

following

elements:

v

A

pointee

��

ORDERED

��

��

PRIVATE

(

data_scope_entity_list

)

��

LASTPRIVATE

70

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

v

An

assumed-size

array

v

A

THREADLOCAL

common

block

v

A

THREADPRIVATE

common

block

or

its

members

v

A

THREADPRIVATE

variable

You

cannot

specify

a

variable

in

a

PRIVATE

clause

of

a

parallel

construct

if:

v

the

variable

appears

in

a

namelist

statement,

variable

format

expression

or

in

an

expression

for

a

statement

function

definition,

and,

v

you

reference

the

statement

function,

the

variable

format

expression

through

formatted

I/O,

or

the

namelist

through

namelist

I/O,

within

the

parallel

construct.

When

individual

members

of

a

common

block

are

privatized,

the

storage

of

the

specified

variable

is

no

longer

associated

with

the

storage

of

the

common

block.

Any

variable

that

is

storage

associated

with

a

PRIVATE

variable

is

undefined

on

entrance

into

the

parallel

construct.

If

a

directive

construct

contains

a

PRIVATE

argument

to

a

Message

Passing

Interface

(MPI)

routine

performing

non-blocking

communication,

the

MPI

communication

must

complete

before

the

end

of

that

construct.

A

variable

name

in

the

data_scope_entity_list

of

the

PRIVATE

clause

can

be

an

allocatable

object.

It

must

not

be

allocated

on

initial

entry

to

the

directive

construct,

and

you

must

allocate

and

deallocate

the

object

for

every

thread

that

executes

the

construct.

Local

variables

without

the

SAVE

or

STATIC

attributes

in

referenced

subprograms

in

the

dynamic

extent

of

a

directive

construct

have

an

implicit

PRIVATE

attribute.

The

PRIVATE

clause

applies

to

the

following

directives:

v

DO

v

PARALLEL

v

PARALLEL

DO

v

PARALLEL

SECTIONS

v

SECTIONS

v

SINGLE

v

PARALLEL

WORKSHARE

Examples

The

following

example

demonstrates

the

proper

use

of

a

PRIVATE

variable

that

is

used

to

define

a

statement

function.

A

commented

line

shows

the

invalid

use.

Since

J

appears

in

a

statement

function,

the

statement

function

cannot

be

referenced

within

the

parallel

construct

for

which

J

is

PRIVATE.

INTEGER

::

ARR(10),

J

=

17

ISTFNC()

=

J

!$OMP

PARALLEL

DO

PRIVATE(J)

DO

I

=

1,

10

J=I

ARR(I)

=

J

!

ARR(I)

=

ISTFNC()

ERROR

A

reference

to

ISTFNC

would

!

make

the

PRIVATE(J)

clause

LASTPRIVATE

SMP

Directives

71

!

invalid.

END

DO

PRINT

*,

ARR

END

REDUCTION

The

REDUCTION

clause

updates

named

variables

declared

on

the

clause

within

the

directive

construct.

Intermediate

values

of

REDUCTION

variables

are

not

used

within

the

parallel

construct,

other

than

in

the

updates

themselves.

Syntax

op_fnc

is

a

reduction_op

or

a

reduction_function

that

appears

in

all

REDUCTION

statements

involving

this

variable.

You

must

not

specify

more

than

one

REDUCTION

operator

or

function

for

a

variable

in

the

directive

construct.

To

maintain

OpenMP

Fortran

API

Version

2.0

compliance,

you

must

specify

op_fnc

for

the

REDUCTION

clause.

A

REDUCTION

statement

can

have

one

of

the

following

forms:

where:

reduction_var_ref

is

a

variable

or

subobject

of

a

variable

that

appears

in

a

REDUCTION

clause

reduction_op

is

one

of

the

intrinsic

operators:

+,

−,

*,

.AND.,

.OR.,

.EQV.,

.NEQV.,

or

.XOR.

reduction_function

is

one

of

the

intrinsic

procedures:

MAX,

MIN,

IAND,

IOR,

or

IEOR.

The

canonical

initialization

value

of

each

of

the

operators

and

intrinsics

are

shown

in

the

following

table.

The

actual

initialization

value

will

be

consistent

with

the

data

type

of

your

corresponding

REDUCTION

variable.

Intrinsic

Operator

Initialization

+

0

��

REDUCTION

(

variable_name_list

)

op_fnc

:

��

��

reduction_var_ref

=

expr

reduction_op

reduction_var_ref

��

��

reduction_var_ref

=

reduction_var_ref

reduction_op

expr

��

��

reduction_var_ref

=

reduction_function

(expr,

reduction_var_ref)

��

��

reduction_var_ref

=

reduction_function

(reduction_var_ref,

expr)

��

LASTPRIVATE

72

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

*

1

-

0

.AND.

.TRUE.

.OR.

.FALSE.

.EQV.

.TRUE.

.NEQV.

.FALSE.

.XOR.

.FALSE.

Intrinsic

Procedure

Initialization

MAX

Smallest

representable

number

MIN

Largest

representable

number

IAND

All

bits

on

IOR

0

IEOR

0

Rules

The

following

rules

apply

to

REDUCTION

statements:

v

A

variable

in

the

REDUCTION

clause

must

only

occur

in

a

REDUCTION

statement

within

the

directive

construct

on

which

the

REDUCTION

clause

appears.

v

The

two

reduction_var_refs

that

appear

in

a

REDUCTION

statement

must

be

lexically

identical.

v

You

cannot

use

the

following

form

of

the

REDUCTION

statement:

reduction_var_ref

=

expr

operator

reduction_var_ref

When

you

specify

individual

members

of

a

common

block

in

a

REDUCTION

clause,

the

storage

of

the

specified

variable

is

no

longer

associated

with

the

storage

of

the

common

block.

Any

variable

you

specify

in

a

REDUCTION

clause

of

a

work-sharing

construct

must

be

shared

in

the

enclosing

PARALLEL

construct.

If

you

use

a

REDUCTION

clause

on

a

construct

that

has

a

NOWAIT

clause,

the

REDUCTION

variable

remains

undefined

until

a

barrier

synchronization

has

been

performed

to

ensure

that

all

threads

have

completed

the

REDUCTION

clause.

A

REDUCTION

variable

must

not

appear

in

a

FIRSTPRIVATE,

PRIVATE

or

LASTPRIVATE

clause

of

another

construct

within

the

dynamic

extent

of

the

construct

in

which

it

appeared

as

a

REDUCTION

variable.

If

you

specify

op_fnc

for

the

REDUCTION

clause,

each

variable

in

the

variable_name_list

must

be

of

intrinsic

type.

The

variablecan

only

appear

in

a

REDUCTION

statement

within

the

lexical

extent

of

the

directive

construct.

You

must

specify

op_fnc

if

the

directive

uses

the

trigger_constant

$OMP.

The

REDUCTION

clause

specifies

named

variables

that

appear

in

reduction

operations.

The

compiler

will

maintain

local

copies

of

such

variables,

but

will

combine

them

upon

exit

from

the

construct.

The

intermediate

values

of

the

REDUCTION

variables

are

combined

in

random

order,

dependent

on

which

threads

finish

their

calculations

first.

Therefore,

there

is

no

guarantee

that

LASTPRIVATE

SMP

Directives

73

bit-identical

results

will

be

obtained

from

one

parallel

run

to

another.

This

is

true

even

if

the

parallel

runs

use

the

same

number

of

threads,

scheduling

type,

and

chunk

size.

Variables

that

you

specify

as

REDUCTION

or

LASTPRIVATE

to

a

parallel

construct

become

defined

at

the

end

of

the

construct.

If

you

have

concurrent

definitions

or

uses

of

REDUCTION

or

LASTPRIVATE

variables

on

multiple

threads,

you

must

ensure

that

the

threads

are

synchronized

at

the

end

of

the

construct

when

the

variables

become

defined.

For

example,

if

multiple

threads

encounter

a

PARALLEL

construct

with

a

REDUCTION

variable,

you

must

synchronize

the

threads

when

they

reach

the

END

PARALLEL

directive,

because

the

REDUCTION

variable

becomes

defined

at

END

PARALLEL.

Therefore

the

whole

PARALLEL

construct

must

be

enclosed

within

a

synchronization

construct.

A

variable

in

the

REDUCTION

clause

must

be

of

intrinsic

type.

A

variable

in

the

REDUCTION

clause,

or

any

element

thereof,

must

not

be

any

of

the

following:

v

A

pointee

v

An

assumed-size

array

v

A

THREADLOCAL

common

block

v

A

THREADPRIVATE

common

block

or

its

members

v

A

THREADPRIVATE

variable

v

An

Allocatable

object

v

A

Fortran

90

pointer

These

rules

describe

the

use

of

REDUCTION

on

OpenMP

directives.

If

you

are

using

the

REDUCTION

clause

on

the

INDEPENDENT

directive,

see

the

INDEPENDENT

directive.

The

OpenMP

implementation

of

the

REDUCTION

clause

applies

to:

v

DO

v

PARALLEL

v

PARALLEL

DO

v

PARALLEL

SECTIONS

v

PARALLEL

WORKSHARE

v

SECTIONS

SCHEDULE

The

SCHEDULE

clause

allows

you

to

specify

the

chunking

method

for

parallelization.

Work

is

assigned

to

threads

in

different

manners

depending

on

the

scheduling

type

or

chunk

size

used.

Syntax

sched_type

is

one

of

AFFINITY,

DYNAMIC,

GUIDED,

RUNTIME,

or

STATIC

n

must

be

a

positive

scalar

integer

expression;

it

must

not

be

specified

for

the

��

SCHEDULE

(

sched_type

)

,n

��

LASTPRIVATE

74

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

RUNTIME

sched_type.

If

you

are

using

the

trigger_constant

$OMP,

do

not

specify

the

scheduling

type

AFFINITY.

AFFINITY

The

iterations

of

a

loop

are

initially

divided

into

number_of_threads

partitions,

containing

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Each

partition

is

initially

assigned

to

a

thread,

and

is

then

further

subdivided

into

chunks

containing

n

iterations,

if

n

has

been

specified.

If

n

has

not

been

specified,

then

the

chunks

consist

of

CEILING(number_of_iterations_remaining_in_partition

/

2)

loop

iterations.

When

a

thread

becomes

free,

it

takes

the

next

chunk

from

its

initially

assigned

partition.

If

there

are

no

more

chunks

in

that

partition,

then

the

thread

takes

the

next

available

chunk

from

a

partition

that

is

initially

assigned

to

another

thread.

Threads

that

are

active

will

complete

the

work

in

a

partition

that

is

initially

assigned

to

a

sleeping

thread.

DYNAMIC

If

n

has

been

specified,

the

iterations

of

a

loop

are

divided

into

chunks

containing

n

iterations

each.

If

n

has

not

been

specified,

then

the

default

chunk

size

is

1

iteration.

Threads

are

assigned

these

chunks

on

a

″first-come,

first-do″

basis.

Chunks

of

the

remaining

work

are

assigned

to

available

threads,

until

all

work

has

been

assigned.

If

a

thread

is

asleep,

its

assigned

work

will

be

taken

over

by

an

active

thread,

once

that

other

thread

becomes

available.

GUIDED

If

you

specify

a

value

for

n,

the

iterations

of

a

loop

are

divided

into

chunks

such

that

the

size

of

each

successive

chunk

is

exponentially

decreasing.

n

specifies

the

size

of

the

smallest

chunk,

except

possibly

the

last.

If

you

do

not

specify

a

value

for

n,

the

default

value

is

1.

The

size

of

the

initial

chunk

is

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Subsequent

chunks

consist

of

CEILING(number_of_iterations_remaining

/

number_of_threads)

iterations.

As

each

thread

finishes

a

chunk,

it

dynamically

obtains

the

next

available

chunk.

You

can

use

guided

scheduling

in

a

situation

in

which

multiple

threads

in

a

team

might

arrive

at

a

DO

work-sharing

construct

at

varying

times,

and

each

iteration

requires

roughly

the

same

amount

of

work.

For

example,

if

you

have

a

DO

loop

preceded

by

one

or

more

work-sharing

SECTIONS

or

DO

constructs

with

NOWAIT

clauses,

you

can

guarantee

that

no

thread

waits

at

the

barrier

longer

than

it

takes

another

thread

to

execute

its

final

LASTPRIVATE

SMP

Directives

75

iteration,

or

final

k

iterations

if

a

chunk

size

of

k

is

specified.

The

GUIDED

schedule

requires

the

fewest

synchronizations

of

all

the

scheduling

methods.

An

n

expression

is

evaluated

outside

of

the

context

of

the

DO

construct.

Any

function

reference

in

the

n

expression

must

not

have

side

effects.

The

value

of

the

n

parameter

on

the

SCHEDULE

clause

must

be

the

same

for

all

of

the

threads

in

the

team.

RUNTIME

Determine

the

scheduling

type

at

run

time.

At

run

time,

the

scheduling

type

can

be

specified

using

the

environment

variable

XLSMPOPTS.

If

no

scheduling

type

is

specified

using

that

variable,

then

the

default

scheduling

type

used

is

STATIC.

STATIC

If

n

has

been

specified,

the

iterations

of

a

loop

are

divided

into

chunks

that

contain

n

iterations.

Each

thread

is

assigned

chunks

in

a

″round

robin″

fashion.

This

is

known

as

block

cyclic

scheduling.

If

the

value

of

n

is

1,

then

the

scheduling

type

is

specifically

referred

to

as

cyclic

scheduling.

If

n

has

not

been

specified,

the

chunks

will

contain

CEILING(number_of_iterations

/

number_of_threads)

iterations.

Each

thread

is

assigned

one

of

these

chunks.

This

is

known

as

block

cyclic

scheduling.

If

a

thread

is

asleep

and

it

has

been

assigned

work,

it

will

be

awakened

so

that

it

may

complete

its

work.

STATIC

is

the

default

scheduling

type

if

the

user

has

not

specified

any

scheduling

type

at

compile-time

or

run

time.

Rules

You

must

not

specify

the

SCHEDULE

clause

more

than

once

for

a

particlaur

DO

directive.

The

SCHEDULE

clause

applies

to

the

following

directives:

v

“DO

/

END

DO”

on

page

23

v

“PARALLEL

DO

/

END

PARALLEL

DO”

on

page

35

SHARED

All

sections

use

the

same

copy

of

the

variables

and

common

blocks

you

specify

in

data_scope_entity_list.

The

SHARED

clause

specifies

variables

that

must

be

available

to

all

threads.

If

you

specify

a

variable

as

SHARED,

you

are

stating

that

all

threads

can

safely

share

a

single

copy

of

the

variable.

Syntax

data_scope_entity

��

SHARED

(

data_scope_entity_list

)

��

LASTPRIVATE

76

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

named_variable

is

a

named

variable

that

is

accessible

in

the

directive

construct

common_block_name

is

a

common

block

name

that

is

accessible

in

the

directive

construct

Rules

A

variable

in

the

SHARED

clause

must

not

be

either:

v

A

pointee

v

A

THREADLOCAL

common

block.

v

A

THREADPRIVATE

common

block

or

its

members.

v

A

THREADPRIVATE

variable.

If

a

SHARED

variable,

a

subobject

of

a

SHARED

variable,

or

an

object

associated

with

a

SHARED

variable

or

subobject

of

a

SHARED

variable

appears

as

an

actual

argument

in

a

reference

to

a

non-intrinsic

procedure

and:

v

The

actual

argument

is

an

array

section

with

a

vector

subscript;

or

v

The

actual

argument

is

–

An

array

section,

–

An

assumed-shape

array,

or,

–

A

pointer

array

and

the

associated

dummy

argument

is

an

explicit-shape

or

assumed-size

array;

then

any

references

to

or

definitions

of

the

shared

storage

that

is

associated

with

the

dummy

argument

by

any

other

thread

must

be

synchronized

with

the

procedure

reference.

You

can

do

this,

for

example,

by

placing

the

procedure

reference

after

a

BARRIER.

The

SHARED

clause

applies

to:

v

PARALLEL

v

PARALLEL

DO

v

PARALLEL

SECTIONS

v

PARALLEL

WORKSHARE

Examples

In

the

following

example,

the

procedure

reference

with

an

array

section

actual

argument

is

required

to

be

synchronized

with

references

to

the

dummy

argument

by

placing

the

procedure

reference

in

a

critical

section,

because

the

associated

dummy

argument

is

an

explicit-shape

array.

INTEGER::

ABC(10)

I=2;

J=5

!$OMP

PARALLEL

DEFAULT(NONE),

SHARED(ABC,I,J)

!$OMP

CRITICAL

CALL

SUB1(ABC(I:J))

!

ACTUAL

ARGUMENT

IS

AN

ARRAY

!

SECTION;

THE

PROCEDURE

!

REFERENCE

MUST

BE

IN

A

CRITICAL

SECTION.

!$OMP

END

CRITICAL

!$OMP

END

PARALLEL

CONTAINS

��

named_variable

/

common_block_name

/

��

LASTPRIVATE

SMP

Directives

77

SUBROUTINE

SUB1(ARR)

INTEGER::

ARR(1:4)

DO

I=1,

4

ARR(I)

=

I

END

DO

END

SUBROUTINE

END

LASTPRIVATE

78

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

OpenMP

Execution

Environment

and

Lock

Routines

The

OpenMP

specification

provides

a

number

of

routines

which

allow

you

to

control

and

query

the

parallel

execution

environment.

Parallel

threads

created

by

the

run-time

environment

through

the

OpenMP

interface

are

considered

independent

of

the

threads

you

create

and

control

using

calls

to

the

Fortran

Pthreads

library

module.

References

within

the

following

descriptions

to

″serial

portions

of

the

program″

refer

to

portions

of

the

program

that

are

executed

by

only

one

of

the

threads

that

have

been

created

by

the

run-time

environment.

For

example,

you

can

create

multiple

threads

by

using

f_pthread_create.

However,

if

you

then

call

omp_get_num_threads

from

outside

of

an

OpenMP

parallel

block,

or

from

within

a

serialized

nested

parallel

region,

the

function

will

return

1,

regardless

of

the

number

of

threads

that

are

currently

executing.

The

OpenMP

execution

environment

routines

are:

v

omp_get_dynamic:

see

“omp_get_dynamic”

on

page

80

v

omp_get_max_threads:

see

“omp_get_max_threads”

on

page

81

v

omp_get_nested:

see

“omp_get_nested”

on

page

81

v

omp_get_num_procs:

see

“omp_get_num_procs”

on

page

81

v

omp_get_num_threads:

see

“omp_get_num_threads”

on

page

82

v

omp_get_thread_num:

see

“omp_get_thread_num”

on

page

82

v

omp_in_parallel:

see

“omp_in_parallel”

on

page

84

v

omp_set_dynamic:

see

“omp_set_dynamic”

on

page

86

v

omp_set_nested:

see

“omp_set_nested”

on

page

87

v

omp_set_num_threads:

see

“omp_set_num_threads”

on

page

88

Included

in

the

OpenMP

run-time

library

are

two

routines

that

support

a

portable

wall-clock

timer.

The

OpenMP

timing

routines

are:

v

omp_get_wtick:

see

“omp_get_wtick”

on

page

83

v

omp_get_wtime:

see

“omp_get_wtime”

on

page

84

The

OpenMP

run-time

library

also

supports

a

set

of

simple

and

nestable

lock

routines.

You

must

only

lock

variables

through

these

routines.

Simple

locks

may

not

be

locked

if

they

are

already

in

a

locked

state.

Simple

lock

variables

are

associated

with

simple

locks

and

may

only

be

passed

to

simple

lock

routines.

Nestable

locks

may

be

locked

multiple

times

by

the

same

thread.

Nestable

lock

variables

are

associated

with

nestable

locks

and

may

only

be

passed

to

nestable

lock

routines.

For

all

the

routines

listed

below,

the

lock

variable

is

an

integer

whose

KIND

type

parameter

is

denoted

either

by

the

symbolic

constant

omp_lock_kind,

or

by

omp_nest_lock_kind.

Please

note

that

the

predefined

lock

variables

are

defined

inside

the

omp_lib

module

which

is

not

an

intrinsic

data

type.

This

variable

is

sized

according

to

the

compilation

mode.

It

is

set

either

to

’4’.

OpenMP

provides

the

following

simple

lock

routines:

v

omp_destroy_lock:

see

“omp_destroy_lock”

on

page

80

79

v

omp_init_lock:

see

“omp_init_lock”

on

page

85

v

omp_set_lock:

see

“omp_set_lock”

on

page

86

v

omp_test_lock:

see

“omp_test_lock”

on

page

88

v

omp_unset_lock:

see

“omp_unset_lock”

on

page

89

OpenMP

provides

the

following

nestable

lock

routines:

v

omp_destroy_nest_lock:

see

“omp_destroy_nest_lock”

v

omp_init_nest_lock:

see

“omp_init_nest_lock”

on

page

85

v

omp_set_nest_lock:

see

“omp_set_nest_lock”

on

page

87

v

omp_test_nest_lock“omp_test_nest_lock”

on

page

89

v

omp_unset_nest_lock:

see

“omp_unset_nest_lock”

on

page

89

Note:

You

can

define

and

implement

your

own

versions

of

the

OpenMP

routines.

However,

by

default,

the

compiler

will

substitute

the

XL

Fortran

versions

of

the

OpenMP

routines

regardless

of

the

existence

of

other

implementations,

unless

you

specify

the

-qnoswapomp

compiler

option.

omp_destroy_lock

This

subroutine

dissassociates

a

given

lock

variable

from

all

locks.

You

have

to

use

omp_init_lock

to

reinitialize

a

lock

variable

that

has

been

destroyed

with

a

call

to

omp_destroy_lock

before

using

it

again

as

a

lock

variable.

Note:

If

you

call

omp_destroy_lock

with

a

lock

variable

that

has

not

been

initialized,

the

result

of

the

call

is

undefined.

Argument

Type

and

Attributes

Type

integer

with

kind

omp_lock_kind.

Examples

For

an

example

of

how

to

use

omp_destroy_lock,

see

“omp_init_lock”

on

page

85

omp_destroy_nest_lock

This

subroutine

initializes

a

nestable

lock

variable

causing

the

lock

variable

to

become

undefined.

The

variable

nvar

must

be

an

unlocked

and

initialized

nestable

lock

variable.

Note:

:

If

you

call

omp_destroy_nest_lock

using

a

variable

that

is

not

initialized,

the

result

is

undefined.

Argument

Type

and

Attributes

Type

integer

with

kind

omp_nest_lock_kind.

Examples

USE

omp_lib

INTEGER(kind=omp_nest_lock_kind)

LOCK

CALL

omp_destroy_nest_lock(LOCK)

omp_get_dynamic

The

omp_get_dynamic

function

returns

.TRUE.

if

dynamic

thread

adjustment

by

the

run-time

environment

is

enabled,

and

.FALSE.

otherwise.

OpenMP

Routines

80

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

Argument

Type

and

Attributes

There

are

no

arguments

to

this

function.

Result

Type

and

Attributes

Default

logical.

omp_get_max_threads

This

function

returns

the

maximum

number

of

threads

that

can

execute

concurrently

in

a

single

parallel

region.

The

return

value

is

equal

to

the

maximum

value

that

can

be

returned

by

the

omp_get_num_threads

function.

If

you

use

omp_set_num_threads

to

change

the

number

of

threads,

subsequent

calls

to

omp_get_max_threads

will

return

the

new

value.

The

function

has

global

scope,

which

means

that

the

maximum

value

it

returns

applies

to

all

functions,

subroutines,

and

compilation

units

in

the

program.

It

returns

the

same

value

whether

executing

from

a

serial

or

parallel

region.

You

can

use

omp_get_max_threads

to

allocate

maximum-sized

data

structures

for

each

thread

when

you

have

enabled

dynamic

thread

adjustment

by

passing

omp_set_dynamic

an

argument

which

evaluates

to

.TRUE.

Argument

Type

and

Attributes

There

are

no

arguments

to

this

function.

Result

Type

and

Attributes

Default

integer.

Result

Value

The

maximum

number

of

threads

that

can

execute

concurrently

in

a

single

parallel

region.

omp_get_nested

The

omp_get_nested

function

returns

.TRUE.

if

nested

parallelism

is

enabled

and

.FALSE.

if

nested

parallelism

is

disabled.

Argument

Type

and

Attributes

There

are

no

arguments

to

this

function.

Result

Type

and

Attributes

Default

logical.

omp_get_num_procs

The

omp_get_num_procs

function

returns

the

number

of

online

processors

on

the

machine.

Argument

Type

and

Attributes

There

are

no

arguments

to

this

function.

OpenMP

Routines

OpenMP

Execution

Environment

and

Lock

Routines

81

Result

Type

and

Attributes

Default

integer.

Result

Value

The

number

of

online

processors

on

the

machine.

omp_get_num_threads

The

omp_get_num_threads

function

returns

the

number

of

threads

in

the

team

currently

executing

the

parallel

region

from

which

it

is

called.

The

function

binds

to

the

closest

enclosing

PARALLEL

directive.

The

omp_set_num_threads

subroutine

and

the

OMP_NUM_THREADS

environment

variable

control

the

number

of

threads

in

a

team.

If

you

do

not

explicitly

set

the

number

of

threads,

the

run-time

environment

will

use

the

number

of

online

processors

on

the

machine

by

default.

If

you

call

omp_get_num_threads

from

a

serial

portion

of

your

program

or

from

a

nested

parallel

region

that

is

serialized,

the

function

returns

1.

Argument

Type

and

Attributes

There

are

no

arguments

to

this

function.

Result

Type

and

Attributes

Default

integer.

Result

Value

The

number

of

threads

in

the

team

currently

executing

the

parallel

region

from

which

the

function

is

called.

Examples

USE

omp_lib

INTEGER

N1,

N2

N1

=

omp_get_num_threads()

PRINT

*,

N1

!$OMP

PARALLEL

PRIVATE(N2)

N2

=

omp_get_num_threads()

PRINT

*,

N2

!$OMP

END

PARALLEL

The

omp_get_num_threads

call

returns

1

in

the

serial

section

of

the

code,

so

N1

is

assigned

the

value

1.

N2

is

assigned

the

number

of

threads

in

the

team

executing

the

parallel

region,

so

the

output

of

the

second

print

statement

will

be

an

arbitrary

number

less

than

or

equal

to

the

value

returned

by

omp_get_max_threads.

omp_get_thread_num

This

function

returns

the

number

of

the

currently

executing

thread

within

the

team.

The

number

returned

will

always

be

between

0

and

NUM_PARTHDS

-

1.

NUM_PARTHDS

is

the

number

of

currently

executing

threads

within

the

team.The

master

thread

of

the

team

returns

a

value

of

0.

OpenMP

Routines

82

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

If

you

call

omp_get_thread_num

from

within

a

serial

region,

from

within

a

serialized

nested

parallel

region,

or

from

outside

the

dynamic

extent

of

any

parallel

region,

this

function

will

return

a

value

of

0.

This

function

binds

to

the

closest

parallel

region.

Result

Type

and

Attributes

Default

integer.

Result

Value

The

value

of

the

currently

executing

thread

within

the

team

between

0

and

NUM_PARTHDS

-

1.

NUM_PARTHDS

is

the

number

of

currently

executing

threads

within

the

team.

A

call

to

omp_get_thread_num

from

a

serialized

nested

parallel

region,

or

from

outside

the

dynamic

extent

of

any

parallel

region

returns

0.

Examples

USE

omp_lib

INTEGER

NP

!$OMP

PARALLEL

PRIVATE(NP)

NP

=

omp_get_thread_num()

CALL

WORK(NP)

!$OMP

MASTER

NP

=

omp_get_thread_num()

CALL

WORK(NP)

!$OMP

END

MASTER

!$OMP

END

PARALLEL

END

SUBROUTINE

WORK(THD_NUM)

INTEGER

THD_NUM

PRINT

*,

THD_NUM

END

omp_get_wtick

The

omp_get_wtick

function

returns

a

double

precision

value

equal

to

the

number

of

seconds

between

consecutive

clock

ticks.

Argument

Type

and

Attributes

There

are

no

arguments

to

this

function.

Result

Type

and

Attributes

Double

precision

real.

Result

Value

The

number

of

seconds

between

consecutive

ticks

of

the

operating

system

real-time

clock.

Examples

USE

omp_lib

DOUBLE

PRECISION

WTICKS

WTICKS

=

omp_get_wtick()

PRINT

*,

’The

clock

ticks

’,

10

/

WTICKS,

&

’

times

in

10

seconds.’

OpenMP

Routines

OpenMP

Execution

Environment

and

Lock

Routines

83

omp_get_wtime

The

omp_get_wtime

function

returns

a

double

precision

value

equal

to

the

number

of

seconds

since

the

initial

value

of

the

operating

system

real-time

clock.

This

value

is

guaranteed

not

to

change

during

execution

of

the

program.

The

value

returned

by

the

omp_get_wtime

function

is

not

consistent

across

all

threads

in

the

team.

Argument

Type

and

Attributes

There

are

no

arguments

to

this

function.

Result

Type

and

Attributes

Double

precision

real.

Result

Value

The

number

of

seconds

since

the

initial

value

of

the

operating

system

real-time

clock.

Examples

USE

omp_lib

DOUBLE

PRECISION

START,

END

START

=

omp_get_wtime()

!

Work

to

be

timed

END

=

omp_get_wtime()

PRINT

*,

’Stuff

took

’,

END

-

START,

’

seconds.’

omp_in_parallel

The

omp_in_parallel

function

returns

.TRUE.

if

you

call

it

from

the

dynamic

extent

of

a

region

executing

in

parallel

and

returns

.FALSE.

otherwise.

If

you

call

omp_in_parallel

from

a

region

that

is

serialized

but

nested

within

the

dynamic

extent

of

a

region

executing

in

parallel,

the

function

will

still

return

.TRUE..

(Nested

parallel

regions

are

serialized

by

default.

See

“omp_set_nested”

on

page

87

and

the

environment

variable

OMP_NESTED

for

more

information.)

Result

Type

and

Attributes

Default

logical.

Result

Value

.TRUE.

if

called

from

the

dynamic

extent

of

a

region

executing

in

parallel.

.FALSE.

otherwise.

Examples

USE

omp_lib

INTEGER

N,

M

N

=

4

M

=

3

PRINT*,

omp_in_parallel()

!$OMP

PARALLEL

DO

DO

I

=

1,N

!$OMP

PARALLEL

DO

DO

J=1,

M

PRINT

*,

omp_in_parallel()

OpenMP

Routines

84

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

END

DO

!$OMP

END

PARALLEL

DO

END

DO

!$OMP

END

PARALLEL

DO

The

first

call

to

omp_in_parallel

returns

.FALSE.

because

the

call

is

outside

the

dynamic

extent

of

any

parallel

region.

The

second

call

returns

.TRUE.,

even

if

the

nested

PARALLEL

DO

loop

is

serialized,

because

the

call

is

still

inside

the

dynamic

extent

of

the

outer

PARALLEL

DO

loop.

omp_init_lock

The

omp_init_lock

subroutine

initializes

a

lock

and

associates

it

with

the

lock

variable

passed

in

as

a

parameter.

After

the

call

to

omp_init_lock,

the

initial

state

of

the

lock

variable

is

unlocked.

Note:

If

you

call

this

routine

with

a

lock

variable

that

you

have

already

initialized,

the

result

of

the

call

is

undefined.

Argument

Type

and

Attributes

Integer

of

kind

omp_lock_kind.

Examples

USE

omp_lib

INTEGER(kind=omp_lock_kind)

LCK

INTEGER

ID

CALL

omp_init_lock(LCK)

!$OMP

PARALLEL

SHARED(LCK),

PRIVATE(ID)

ID

=

omp_get_thread_num()

CALL

omp_set_lock(LCK)

PRINT

*,’MY

THREAD

ID

IS’,

ID

CALL

omp_unset_lock(LCK)

!$OMP

END

PARALLEL

CALL

omp_destroy_lock(LCK)

In

the

above

example,

one

at

a

time,

the

threads

gain

ownership

of

the

lock

associated

with

the

lock

variable

LCK,

print

the

thread

ID,

and

release

ownership

of

the

lock.

omp_init_nest_lock

The

omp_init_nest_lock

subroutine

allows

you

to

initialize

a

nestable

lock

and

associate

it

with

the

lock

variable

you

specify.

The

initial

state

of

the

lock

variable

is

unlocked,

and

the

initial

nesting

count

is

zero.

The

value

of

nvar

must

be

an

unitialized

nestable

lock

variable.

Note:

If

you

call

omp_init_nest_lock

using

a

variable

that

is

already

initialized,

the

result

is

undefined.

Argument

Type

and

Attributes

Integer

of

kind

omp_nest_lock_kind.

Examples

USE

omp_lib

INTEGER(kind=omp_nest_lock_kind)

LCK

CALL

omp_init_nest_lock(LCK)

OpenMP

Routines

OpenMP

Execution

Environment

and

Lock

Routines

85

For

an

example

of

how

to

use

omp_init_nest_lock,

see

“omp_set_nest_lock”

on

page

87.

omp_set_dynamic

The

omp_set_dynamic

subroutine

enables

or

disables

dynamic

adjustment,

by

the

run-time

environment,

of

the

number

of

threads

available

to

execute

parallel

regions.

If

you

call

omp_set_dynamic

with

a

scalar_logical_expression

that

evaluates

to

.TRUE.,

the

run-time

environment

can

automatically

adjust

the

number

of

threads

that

are

used

to

execute

subsequent

parallel

regions

to

obtain

the

best

use

of

system

resources.

The

number

of

threads

you

specify

using

omp_set_num_threads

becomes

the

maximum,

not

exact,

thread

count.

If

you

call

the

subroutine

with

a

scalar_logical_expression

which

evaluates

to

.FALSE.,

dynamic

adjustment

of

the

number

of

threads

is

disabled.

The

run-time

environment

cannot

automatically

adjust

the

number

of

threads

used

to

execute

subsequent

parallel

regions.

The

value

you

pass

to

omp_set_num_threads

becomes

the

exact

thread

count.

By

default,

dynamic

thread

adjustment

is

enabled.

If

your

code

depends

on

a

specific

number

of

threads

for

correct

execution,

you

should

explicitly

disable

dynamic

threads.

Note:

The

number

of

threads

remains

fixed

for

each

parallel

region.

The

omp_get_num_threads

function

returns

that

number.

This

subroutine

has

precedence

over

the

OMP_DYNAMIC

environment

variable.

Result

Type

and

Attributes

Default

logical.

omp_set_lock

The

omp_set_lock

subroutine

forces

the

calling

thread

to

wait

until

the

specified

lock

is

available

before

executing

subsequent

instructions.

The

calling

thread

is

given

ownership

of

the

lock

when

it

becomes

available.

Note:

If

you

call

this

routine

with

a

lock

variable

that

has

not

been

initialized,

the

result

of

the

call

is

undefined.

Also,

if

a

thread

that

owns

a

lock

tries

to

lock

it

again

by

issuing

a

call

to

omp_set_lock,

it

will

produce

a

deadlock.

Argument

Type

and

Attributes

omp_lock_kind.

Examples

USE

omp_lib

INTEGER

A(100)

INTEGER(kind=omp_lock_kind)

LCK_X

CALL

omp_init_lock

(LCK_X)

!$OMP

PARALLEL

PRIVATE

(I),

SHARED

(A,

X)

!$OMP

DO

DO

I

=

3,

100

A(I)

=

I

*

10

CALL

omp_set_lock

(LCK_X)

OpenMP

Routines

86

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

X

=

X

+

A(I)

CALL

omp_unset_lock

(LCK_X)

END

DO

!$OMP

END

DO

!$OMP

END

PARALLEL

CALL

omp_destroy_lock

(LCK_X)

In

this

example,

the

lock

variable

LCK_X

is

used

to

avoid

race

conditions

when

updating

the

shared

variable

X.

By

setting

the

lock

before

each

update

to

X

and

unsetting

it

after

the

update,

you

ensure

that

only

one

thread

is

updating

X

at

a

given

time.

omp_set_nested

The

omp_set_nested

subroutine

enables

or

disables

nested

parallelism.

If

you

call

the

subroutine

with

a

scalar_logical_expression

that

evaluates

to

.FALSE.,

nested

parallelism

is

disabled.

Nested

parallel

regions

are

serialized,

and

they

are

executed

by

the

current

thread.

This

is

the

default

setting.

If

you

call

the

subroutine

with

a

scalar_logical_expression

that

evaluates

to

.TRUE.,

nested

parallelism

is

enabled.

Parallel

regions

that

are

nested

can

deploy

additional

threads

to

the

team.

It

is

up

to

the

run-time

environment

to

determine

whether

additional

threads

should

be

deployed.

Therefore,

the

number

of

threads

used

to

execute

parallel

regions

may

vary

from

one

nested

region

to

the

next.

This

subroutine

takes

precedence

over

the

OMP_NESTED

environment

variable.

Result

Type

and

Attributes

Default

logical.

omp_set_nest_lock

The

omp_set_nest_lock

subroutine

allows

you

to

set

a

nestable

lock.

The

thread

executing

the

subroutine

will

wait

until

the

lock

becomes

available

and

then

set

that

lock,

incrementing

the

nesting

count.

A

nestable

lock

is

available

if

it

is

owned

by

the

thread

executing

the

subroutine,

or

is

unlocked.

Argument

Type

and

Attributes

Integer

of

kind

omp_nest_lock_kind.

Examples

USE

omp_lib

INTEGER

P

INTEGER

A

INTEGER

B

INTEGER

(

kind=omp_nest_lock_kind

)

LCK

CALL

omp_init_nest_lock

(

LCK

)

!$OMP

PARALLEL

SECTIONS

!$OMP

SECTION

CALL

omp_set_nest_lock

(

LCK

)

P

=

P

+

A

CALL

omp_set_nest_lock

(

LCK

)

P

=

P

+

B

CALL

omp_unset_nest_lock

(

LCK

)

CALL

omp_unset_nest_lock

(

LCK

)

OpenMP

Routines

OpenMP

Execution

Environment

and

Lock

Routines

87

!$OMP

SECTION

CALL

omp_set_nest_lock

(

LCK

)

P

=

P

+

B

CALL

omp_unset_nest_lock

(

LCK

)

!$OMP

END

PARALLEL

SECTIONS

CALL

omp_destroy_nest_lock

(

LCK

)

END

omp_set_num_threads

The

omp_set_num_threads

subroutine

tells

the

run-time

environment

how

many

threads

to

use

in

the

next

parallel

region.

The

scalar_integer_expression

that

you

pass

to

the

subroutine

is

evaluated,

and

its

value

is

used

as

the

number

of

threads.

If

you

have

enabled

dynamic

adjustment

of

the

number

of

threads

(see

“omp_set_dynamic”

on

page

86),

omp_set_num_threads

sets

the

maximum

number

of

threads

to

use

for

the

next

parallel

region.

The

run-time

environment

then

determines

the

exact

number

of

threads

to

use.

However,

when

dynamic

adjustment

of

the

number

of

threads

is

disabled,

omp_set_num_threads

sets

the

exact

number

of

threads

to

use

in

the

next

parallel

region.

This

subroutine

takes

precedence

over

the

OMP_NUM_THREADS

environment

variable.

Note:

If

you

call

this

subroutine

from

the

dynamic

extent

of

a

region

executing

in

parallel,

the

behavior

of

the

subroutine

is

undefined.

Argument

Type

and

Attributes

Integer.

omp_test_lock

The

omp_test_lock

function

attempts

to

set

the

lock

associated

with

the

specified

lock

variable.

It

returns

.TRUE.

if

it

was

able

to

set

the

lock

and

.FALSE.

otherwise.

In

either

case,

the

calling

thread

will

continue

to

execute

subsequent

instructions

in

the

program.

Note:

If

you

call

omp_test_lock

with

a

lock

variable

that

has

not

yet

been

initialized,

the

result

of

the

call

is

undefined.

Result

Type

and

Attributes

Default

logical.

Argument

Type

and

Attributes

Integer

of

kind

omp_lock_kind.

Result

Value

.TRUE.

if

the

function

was

able

to

set

the

lock.

.FALSE.

otherwise.

Examples

USE

omp_lib

INTEGER

LCK

INTEGER

ID

CALL

omp_init_lock

(LCK)

!$OMP

PARALLEL

SHARED(LCK),

PRIVATE(ID)

ID

=

omp_get_thread_num()

OpenMP

Routines

88

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

DO

WHILE

(.NOT.

omp_test_lock(LCK))

CALL

WORK_A

(ID)

END

DO

CALL

WORK_B

(ID)

CALL

omp_unset_lock

(LCK)

!$OMP

END

PARALLEL

CALL

omp_destroy_lock

(LCK)

In

this

example,

a

thread

repeatedly

executes

WORK_A

until

it

can

set

LCK,

the

lock

variable.

When

it

succeeds

in

setting

the

lock

variable,

it

executes

WORK_B.

omp_test_nest_lock

The

omp_test_nest_lock

subroutine

allows

you

to

attempt

to

set

a

lock

using

the

same

method

as

omp_set_nest_lock

but

the

execution

thread

does

not

wait

for

confirmation

that

the

lock

is

available.

If

the

lock

is

successfully

set,

the

function

will

increment

the

nesting

count.

If

the

lock

is

unavailable

the

function

returns

a

value

of

zero.

The

result

value

is

always

a

default

integer.

Argument

Type

and

Attributes

Integer

of

kind

omp_nest_lock_kind.

Result

Value

.TRUE.

if

the

function

was

able

to

set

the

lock.

.FALSE.

otherwise.

omp_unset_lock

This

subroutine

causes

the

executing

thread

to

release

ownership

of

the

specified

lock.

The

lock

can

then

be

set

by

another

thread

as

required.

Note:

The

behavior

of

the

omp_unset_lock

subroutine

is

undefined

if

either:

v

The

calling

thread

does

not

own

the

lock

specified,

or

v

The

routine

is

called

with

a

lock

variable

that

has

not

been

initialized.

Result

Type

and

Attributes

Integer

of

kind

omp_lock_kind.

Examples

For

an

example

of

how

to

use

omp_unset_lock,

see

“omp_set_lock”

on

page

86.

omp_unset_nest_lock

The

omp_unset_nest_lock

subroutine

allows

you

to

release

ownership

of

a

nestable

lock.

The

subroutine

decrements

the

nesting

count

and

releases

the

associated

thread

from

ownership

of

the

nestable

lock.

Result

Type

and

Attributes

Integer

of

kind

omp_nest_lock_kind.

Examples

For

an

example

of

how

to

use

omp_unset_nest_lock,

see

“omp_set_nest_lock”

on

page

87.

OpenMP

Routines

OpenMP

Execution

Environment

and

Lock

Routines

89

90

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

Trademarks

and

Service

Marks

The

following

terms,

used

in

this

publication,

are

trademarks

or

service

marks

of

the

International

Business

Machines

Corporation

in

the

United

States

or

other

countries

or

both:

IBM

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

91

92

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

Technology

Preview

���

	Contents
	Preface
	Compiling XL Fortran SMP Programs
	-qsmp Option

	Setting Run-Time Options
	The XLSMPOPTS Environment Variable

	OpenMP Environment Variables
	OMP_DYNAMIC Environment Variable
	OMP_NESTED Environment Variable
	OMP_NUM_THREADS Environment Variable
	OMP_SCHEDULE Environment Variable

	SMP Directives
	An Introduction to SMP Directives
	Parallel Region Construct
	Work-sharing Constructs
	Combined Parallel Work-sharing Constructs
	Synchronization Constructs
	Other OpenMP Directives
	Non-OpenMP SMP Directives

	Detailed Descriptions of SMP Directives
	ATOMIC
	BARRIER
	CRITICAL / END CRITICAL
	DO / END DO
	DO SERIAL
	FLUSH
	MASTER / END MASTER
	ORDERED / END ORDERED
	PARALLEL / END PARALLEL
	PARALLEL DO / END PARALLEL DO
	PARALLEL SECTIONS / END PARALLEL SECTIONS
	PARALLEL WORKSHARE / END PARALLEL WORKSHARE
	SCHEDULE
	SECTIONS / END SECTIONS
	SINGLE / END SINGLE
	THREADLOCAL
	THREADPRIVATE
	WORKSHARE

	OpenMP Directive Clauses
	Global Rules for Directive Clauses
	Pointers and OpenMP Fortran API Version 2.0

	COPYIN
	COPYPRIVATE
	DEFAULT
	IF
	FIRSTPRIVATE
	LASTPRIVATE
	NUM_THREADS
	ORDERED
	PRIVATE
	REDUCTION
	SCHEDULE
	SHARED

	OpenMP Execution Environment and Lock Routines
	omp_destroy_lock
	omp_destroy_nest_lock
	omp_get_dynamic
	omp_get_max_threads
	omp_get_nested
	omp_get_num_procs
	omp_get_num_threads
	omp_get_thread_num
	omp_get_wtick
	omp_get_wtime
	omp_in_parallel
	omp_init_lock
	omp_init_nest_lock
	omp_set_dynamic
	omp_set_lock
	omp_set_nested
	omp_set_nest_lock
	omp_set_num_threads
	omp_test_lock
	omp_test_nest_lock
	omp_unset_lock
	omp_unset_nest_lock

	Trademarks and Service Marks

